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A Sequential Monte Carlo inference for longitudinal data with luespotted mud hopper data
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ABSTRACT

Sequential Monte Carlo techniques are a set of powerful and versatile simulation-based methods to perform optimal state
estimation in nonlinear non-Gaussian state-space models. We can use Monte Carlo particle filters adaptively, ie. so that they
simultaneously estimate the parameters and the signal.

However, Sequential Monte Carlo techniques require the use of special patticle filtering techniques which suffer from several
drawbacks. We consider here an alternative approach combining particle filtering and Sequential Hybrid Monte Carlo. We give
some examples of applications in fisheries(luespotted mud hopper data).

IHE

Sequential Hybrid Monte Carlo, state-space model

I. INTRODUCTION with respect to some measure ¥ on the state space, and

given { X}, the observable random variable Y, are

A state-space model is a stochastic process ()(t’ Yf) conditionally independent such that ¥, has density

in which {X,} is an unobservable Markov process

function g( . X;) with respect to some measure[3].

with transition probability density function f( - |- ) Such models have wide discussions of methods in time
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series applications and have applications in signal
processing, bioinformatics and time series modelling{1,2].
The particle filtering have been suggested in above
model. Much of the particle filtering literature has been
concemned with filtering for nonlinear models in tracking
applications[5,7,8]. There are many other important
contexts in which sequential methods are needed. In this
paper, we develop sequential Monte Carlo methodology
with Hybrid Monte Carlo(HMC) for longitudinal data.
Hybrid Monte Carlo (HMC) which can be very
effective means for posterior
distribution[4]. Hybrid Monte Carlo(HMC) as a Markov
chain Monte CarloMCMC) technique built upon the
basic principle of Hamiltonian mechanics. Its applications

exploring complex

in molecular simulation have attracted much interest
from researchers. Thus we are to propose that the
Sequential Hybrid Monte Carlo(SHMC) within Markov
chain Monte CarloMCMC), dealing with any nonlinear
and non-Gaussian state-space model in a Bayesian
framework. We apply Gaussian state-space model in
Shephard and Pitt[6] as daily catched data of luespotted
mud hopper. We show in this paper that SHMC can
very effective means for Bayesian estimation of
state-space model. In our initial discussions we will
assume the standard
Markovian state-space model
x, ~ f(zlz,_,) [State evolution density]

Y~ g (yt|mt) [Observation density]
where {:L't} are unobserved states of the system and
{y,} are observations made over some time interval
t € {1,2,---, T}. The initial state has density
plz;).

II. SEQUENTIAL HYBRID MONTE CARLO

We formulate the sequential hybrid Monte Carlo
method in terms of updates to the smoothing density.
Once we have samples drawn from the smoothing
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density, it is straightforward to discard those that are not
required if filtering is main objective. At time t, we
draw {:L’j“:t ,7=1,2,-+-,t} from the smoothing
density p(x1:i|y1 :t) and can represent the SHMC

following formula with auxiliary momenta variables

p= (pl, ey pt) and the related Hamiltonian function
H(z,p).

1¢ 2
H(z,p) = Ulw, - z) + 53, pi= Ulz )+ E-
t=1

2

_22_)

P(z,p)= e HEP)) — (- U)),

The method deduce that, form the statistical point of
view, the momenta P are nothing but a set of
independent, Gaussian distributed, random variables of
zero mean and variance equal to the system. There is no
simple closed form for the proposal probability
k(:l:* | £), and the proposal change Z of T s
done in the following way: first, a set of initial values

for the momenta P are generated by using the Gaussian’

-£-)

distribution € , hext Hamilton’s equation of

motion, Til1:t=Pji1:e pjl]:tzF;‘H:t where
Fiy.(x)=—0U(z)/0z;,., is the force acting

on the variable x;, are integrated numerically using the

leap-flog algorithm with a time step Ot.

. 5t
zj|1:123'?“1:1‘“5?517]41::"‘—‘2 Fij1.4(x)
. ot .
I’jt1:¢=Pj|1:t,+_2'(F}|1:1.(1)+F}||:1,(I N,

j=1,2,-t

The proposal T * is obtained after 7 iterations of the

previous basic integration step. In other words, by

numerical imegratibn of Hamilton’s equations during a

time T6t. The value Z must now be accepted with a
probability given by

hiz" | z)=min {1,3‘("”(1‘-?')‘”(:,?))}
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M. BAYESIAN FORMULA VIA SHMC IN
STATE-SPACE MODEL

We consider a nonlinear and nonnormal state-space
model in the following general form

x,= f(x,_,,m,0) [Transition Equation]
Y=g (J)t 5 €, A) [Measurement Equation]
for t=1,2,---, 7, where 7T denotes the sample

size. Suppose we observe only ¥y ., = (Y1, Yo, == Yy )
and the functional forms of both g( + ) and f( * )
are known, whereas I,.; = (:I:l,aIQ,"',xt) is not
directly observed. Since the analytical computation of the
likelihood function of A is generally infeasible, the
standard maximum likelihood estimation method cannot
be applied. We overcome this difficulty by contaminated

error €, Treating the problem as a missing data

problem, we write the pseudo posterior distribution of A
and § as follows,

Pl A ) P(Y1 L | 20, M) Py [ A)P(A)

It can be shown that under mild conditions, the
pseudo posterior of A converges to its true posterior
almost surely as 0°—0. Under the setup, the density of
x, and Y, given A and 0 is written as,

Plzy . Vi [ X8) = Plz,. | )P(Yi. | 21.0.0)

where the two densities in the right hand side are
represented by

P(xl:f | 5) =P($0)HP($1;]' | xl:j—lré)

i=1
t
P(let | xl:t’A) = Hp(yj ‘ zj,/\)
j=1

where P (IO | &) denotes the initial density of T,
when 1z, is assumed to be a random variable. From the
Bayes theorem, the conditional distribution of I(;.;)
given Y(; .}, and 0 is obtained as follows
Pz, Yi.0 1 A9)

P(zl:l | Yi.nA6)=
fP(-’l’l.n ol /\;5)‘11’:1:1

Hence Bayesian smoothing random draws via SHMC

in State-space model are generated as follows

(STEP)
I. Take appropriate values for A, § and Z(; ¢},
t=1,2,---,t

2. Generate a random draw of from

P(z;l - ) for 7=1,2,--,t

Li1:¢)

2-1 Generate a new momentum vector I; from
Gaussian distribution 7 (p; ) o< exp {~ K (p;)}
2-2 Run the leapfrog algorithm for L steps to reach
a new configuration in the phase space (:I,‘gL), p§L) )
23 Let (2(5,,),04..) = @, ) with
probability
min |1, exp (— H(z{",— pi")) + H(z;_1,— p,))]

where H( +, + ) is Hamiltonian.

3. Generate a random draw of A from P(\ | + )

4. Generate a random draw of & from P(8 | )

5. Repeat 2)-4) /V times to obtain random draws of
Ti1:t)s 0 and A,

IV. APPLICATION

Consider the following Gaussian state-space model in
Shephard and '

Pitt[6]
Yy=pt+z+e ftNN(O;Uf)
Ty =@,y + 1, ntNN(O;U?,)

; ~ N(0,0,/(1 —7*))
where one observes y and is interested in sampling

from the posterior distribution of  and tt. Our dataset

consist of daily catched data of luespotted mud hopper
from 3/15/2003 to 11/30/2004 (a total of T=480
observations).
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Let l‘l:t: ($1;$2;"';xt) and

Yi.0= W, Yp "> Y), and let the priors of
parameters follow

03, ~ Inv — X2 (al; B )

p~ N(0,0;)

0 ~ hw—x* (ay, )

(¢+1)/2 ~ Beta(as, B)

Then the following conditional distributions can be

easily sampled from
037 | ¢,2,., ~ Im)_XQ(t'*'au V)

¢ | 012']7x1:f

t—1
zf(l _¢’2)+ E ($j+1_¢-’15§)
i

205

(14+¢)" 7" (1= ¢)*7%

2|
eyt W

i
~ bL'u—Xi(az+t,ﬁ[a2/32+ S —p—a )ZD
S 24

o exp|—

t
22 e
Uu‘:I (yy ‘T]) o202

g eOpu
Tr 2y .2, 3
2{to5*0?) to, +o;

15 I T ™
where

1 t
V= Tta, [‘11/31 +ai(1-¢*) + J; (-"3j—¢"7j—1)2]

Once the parameter values are given, the negative log

density is

U(Il:y): i (yj_ﬂ2—123+zf(]—;¢3) +f—z:1 ('TJ'“_?IL):

e 20, =t 20,
The posterior density of X;.,, given the parameter

values, is proportional to e (— U(z; .,)).

V. RESULTS AND CONCLUSION

We implemented the following iterative sampling
algorithm: Given ,we drew the parameters , and from
the above conditional distributions; whereas given the
realized values of the parameters, we drew the state
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variable by the SHMC. This SHMC within Gibbssampler
were run for 110,000 iterations and the results from the
last 100,000 iterations are reported in table 1.

table 1. Bayes estimates of the parameters.

variables | mean sd MC error 2.5% median 97.5%

B 05000 02882 9422E-4 00249 0502 09744
¢ 0.9993 0.00058 2.735E-6  0.9978 0.999  0.9999
g 0.0017 0.00024 8.064E-7 0.0013 0.001 0.0023

We have the result that is the density estimator of the
parameters in figure 1-3. Especially 7 isa important
measure of volatility. SHMC is stable since the density
estimator of this paper is so stable. The state-space
models that they used are quite restricted to some
functional forms, because they studied the special
state-space models such that it is easy to generate
random draws from the underlying assumptions or the);
considered the case where rejection method works well.
We have shown the SHMC within Gibbs sampler.

beta2 sample: 100000
151
1.0}
osf {
00t .

Figure 1. Bayesian density estimator of ﬂ2
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1.00E+3 |
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Figure 2. Bayesian density estimator of ¢
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Figure 3. Bayesian density estimator of o
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