DOI QR코드

DOI QR Code

Study on the Characteristics of ALD HfO2 Thin Film by using the High Pressure H2 Annealing

고압의 HfO2 가스 열처리에 따른 원자층 증착 H2 박막의 특성 연구

  • Ahn, Seung-Joon (Department of Physics & Advanced Materials Science, Sunmoon University) ;
  • Park, Chul-Geun (Division of Information and Communication Engineering, Sunmoon University) ;
  • Ahn, Seong-Joon (Division of Information and Communication Engineering, Sunmoon University)
  • 안승준 (선문대학교 자연과학대학 신소재과학과) ;
  • 박철근 (선문대학교 공과대학 정보통신공학부) ;
  • 안성준 (선문대학교 공과대학 정보통신공학부)
  • Published : 2005.10.01

Abstract

We have investigated and tried to improve the characteristics of the thin $HfO_2$ layer deposited by ALD for fabricating a MOSFET device where the $HfO_2$ film worked as the gate dielectric. The substrate of MOSFET device is p-type (100) silicon wafer over which the $HfO_2$ dielectric layer with thickness of $5\~6\;nm$ has been deposited. Then the $HfO_2$ film was annealed with $1\~20\;atm\;H_2$ gas and subsequently aluminum electrodes was made so that the active area was $5{\times}10^{-5}\;cm^2$. We have found out that the drain current and transconductance increased by $5\~10\%$ when the $H_2$ gas pressure was 20 atm, which significantly contributed to the reliable operation of the high-density MOSFET devices.

새로운 저온 박막증착 공정인 원자층 증착방법으로 증착된 $HfO_2$ 박막을 게이트의 유전물질로 사용하여 MOSFET 소자를 제작하기 위하여 $HfO_2$ 박막의 특성을 개선하고 평가하였다. MOSFET 소자는 p-type (100) 실리콘 웨이퍼 위에 두께가 $5\~6\;nm$인 원자층 증착 $HfO_2$ 박막을 증착한 다음, 압력이 $1\~20\;atm$$H_2$ 가스로 열처리 하여 활성 영역이 $5{\times}10^{-5}\;cm^2$이 되도록 알루미늄으로 전극을 증착하였다. 제작된 MOSFET 소자는 열처리 압력이 20 atm일 경우 $5\~10\%$ 정도 드레인 전류와 transconductance가 개선되었으며, 이것은 고집적화된 소자의 신뢰성 향상에 크게 기여할 것으로 생각된다.

Keywords

References

  1. T. Suntola and J. Antson, U. S. Patent No. 4058430(1977)
  2. T. Suntola, J Hyvarinen, Ann. Rev. Mater. Sci., 15, 177(1985) https://doi.org/10.1146/annurev.ms.15.080185.001141
  3. O. Sneh, R.B. Clark-Phelps, A.R. Londergan, J. Winkler, and T.E. Seidel, Thin Solid Films, 402, 248(2002) https://doi.org/10.1016/S0040-6090(01)01678-9
  4. R.G. Gordon, D. Hausmann, E. Kim, and J. Shepard, Chem. Vap. Deposition, 9, 73(2003) https://doi.org/10.1002/cvde.200290005
  5. J.J. Ganem, I. Trimaille, I.C. Vickridge, D. Blin, and F. Martin, Nuclear Instruments and Methods in Physics Research B, 219-220, 856(2004)
  6. Y.S. Kim, H. Jeon, Y.D. Kim, and W.M. Kim, J. Korean Phys. Soc., 37, 1045(2000) https://doi.org/10.3938/jkps.37.1045
  7. H.S. Chang, H. Hwang, M.H. Cho, D.W. Moon, S.J. Doh, J.H. Lee, and N.I. Lee, Appl. Phys. Lett., 84, 28(2004) https://doi.org/10.1063/1.1637949
  8. M. Leskela and M. Ritala, Thin Solid Films, 409, 138(2002) https://doi.org/10.1016/S0040-6090(02)00117-7
  9. M.L. Hitchman, Chemical Vapor Deposition Principle and Application, Academic Press, p. 212(1993)
  10. D.L. Smith, Thin Film Deposition, McGraw Hill Inc., p. 156(1995)
  11. Y.S. Lin, R. Puthenkovilakam, and J.P. Chang, Appl. Phys. Lett., 81, 2041 (2002)
  12. Y.K. Park, Y.S. Ahn, S.B. Kim, K.H. Lee, C.H. Cho, T.Y. Chung, and K. Kim, J. Korean Phys. Soc., 44, 112(2004)
  13. T. Suntola, Mat. Sci. Rep., 261(1989)
  14. R. Choi, K. Onishi, C.S. Kang, H.J. Cho, Y.H. Kim, S. Krishnan, M.S. Akbar, and J.C. Lee, IEEE Electron Device Lett., 24, 144(2003) https://doi.org/10.1109/LED.2003.809531
  15. K. Onishi, C.S. Kang, R. Choi, H.J. Cho, S. Gopalan, R.E. Nieh, S.A. Krishnan, and J.C. Lee, IEEE Trans. Electron Devices, 50, 384(2003) https://doi.org/10.1109/TED.2002.807447
  16. T. Lee, J. Ahn, J. Oh, Y. Kim, Y.B. Kim, D.K. Choi, and J. Jung, J. Korean Phys. Soc., 42, 272(2003)
  17. N. Takahashi, S. Nonobe, and T. Nakamura, J. Solid State Chem., 177, 3944(2004) https://doi.org/10.1016/j.jssc.2004.07.029
  18. S. Mudanai, F. Li, S.B. Samavedam, P.J. Tobin, C.S. Kang, R. Nieh, J.C. Lee, L.F. Register, and S.K. Banerjee, IEEE Electron Device Lett., 23, 728(2002) https://doi.org/10.1109/LED.2002.805753
  19. R.J. Carter, E. Cartier, A. Kerber, L. Pantisano, T. Schram, and S. De Gendt, Appl. Phys. Lett., 83, 533(2003) https://doi.org/10.1063/1.1590422