Bacterial Communities of Biofilms Sampled from Seepage Groundwater Contaminated with Petroleum Oil

  • CHO WONSIL (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • LEE EUN-HEE (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • SHIM EUN-HWA (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • KIM JAISOO (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • RYU HEE WOOK (Department of Environmental and Chemical Engineering, Soongsil University) ;
  • CHO KYUNG-SUK (Department of Environmental Science and Engineering, Ewha Womans University)
  • Published : 2005.10.01

Abstract

The diesel-degrading activities of biofilms sampled from petroleum-contaminated groundwaters in urban subway drainage systems were examined in liquid cultures, and the microbial populations of the biofilms were characterized by denaturing gel gradient electrophoresis (DGGE) and 16S rDNA sequence analysis. Biofilm samples derived from two sites (19 K and 20 K) at subway Station N and Station I could degrade around $80\%$ of applied diesel within 20 and 40 days, respectively, at $15^{\circ}C$, and these results were strongly correlated with the growth patterns of the biofilms. The closest phylogenetic neighbor of a dominant component in the 19 K biofilm was Thiothrix fructosivorans strain Q ($100\%$ similarity). Four dominant strains in the 20 K biofilm were closely related to Thiothrix fructosivorans strain Q ($100\%$ similarity), Thiothrix sp. CC-5 ($100\%$ similarity), Sphaerotilus sp. IF14 ($99\%$ similarity), and Cytophaga-Flexibacter-Bacterioides (CFB) group bacterium RW262 ($98\%$ similarity). Three dominant members in the Station I biofilms were very similar to uncultured Cytophagales clone CRE-PA82 ($91\%$ similarity), Pseudomonas sp. WDL5 ($97\%$ similarity), and uncultured CFB group bacterium LCK-64 ($94\%$ similarity). The microbial components of the biofilms differed depending on the sampling site. This is the first report on the isolation of clones highly similar to Thiothrix fructosivorans and Thiothrix sp. from biofilms in petroleum-polluted groundwaters, and the first evidence that these organisms may play major roles in petroleum degradation and/or biofilm-development.

Keywords

References

  1. Abed, R. M. M., N. M. D. Safi, J. Koster, D. de Beer, Y. EI-Nahhal, J. Gullkotter, and F. Carcia-Pichel. 2002. Microbial diversity of a heavily polluted microbial mat and its community changes following degradation of petroleum compounds. Appl. Environ. Microbiol. 68: 1674-1683 https://doi.org/10.1128/AEM.68.4.1674-1683.2002
  2. Alcantara, S., A. Velasco, A. Munoz, J. Cid, S. Revah, and E. Razo-Flores. 2004. Hydrogen sulfide oxidation by a microbial consortium in a recirculation reactor system: Sulfur formation under oxygen limitation and removal of phenols. Environ. Sci. Technol. 38: 918-923 https://doi.org/10.1021/es034527y
  3. Alfreider, A., C. Vogt, and W. Babel. 2002. Microbial diversity in an in situ reactor system treating monochlorobenzene contaminated groundwater as revealed by 16S ribosomal DNA analysis. Syst. Appl. Microbiol. 25: 232-240 https://doi.org/10.1078/0723-2020-00111
  4. An, Y. J., Y. H. Joo, I. Y. Hong, H. W. Ryu, and K. S. Cho. 2004. Microbial characterization of toluene-degrading denitrifYing consortia obtained from terrestrial and marine ecosystems. Appl. Microbiol. Biotechnol. 65: 611-619
  5. Baek, K. H., H. S. Kim, S. H. Moon, I. S. Lee, H. M. Oh, and B. D. Yoon. 2004. Effects of soil types on the biodegradation of crude oil by Nocardia sp. H 17-1. J. Microbiol. Biotechnol. 14: 901-905
  6. Baldi, F., M. Pepi, A. Capone, C. D. Giovampaola, C. Milanesi, R. Fani, and R. Focarelli. 2003. Envelope glycosylation determined by lectins in microscopy sections of Acinetobacter venetian us induced by diesel fuel. Res. Microbiol. 154: 417-424 https://doi.org/10.1016/S0923-2508(03)00128-1
  7. Bardi, L., A. Mattei, S. Steffan, and M. Marzona. 2000. Hydrocarbon degradation by a soil microbial population with ${\beta}$-cyclodextrin as surfactant to enhance bioavailability. Enzyme Microbiol. Technol. 27: 709-713 https://doi.org/10.1016/S0141-0229(00)00275-1
  8. Bosshard, P. P., Y. Santini, D. Gruter, R. Stettler, and R. Bachofen. 2000. Bacterial diversity and community composition in the chemocline of the meromictic alpine Lake Cadagno as revealed by 16S rDNA analysis. FEMS Microbiol. Ecol. 31: 173-182 https://doi.org/10.1111/j.1574-6941.2000.tb00682.x
  9. Bouwer, E. J., W. Zhang, L. P. Wilson, and N. P. Durant. 1997. PAH-contaminated soils/sediments. Ann. NY Acad. Sci. 829: 103-117 https://doi.org/10.1111/j.1749-6632.1997.tb48569.x
  10. Brigmon, R. L., M. Furlong, and W. B. Whitman. 2003. Identification of Thiothrix unzil in two distinct ecosystems. Left. Appl. Microbiol. 36: 88-91 https://doi.org/10.1046/j.1472-765X.2003.01256.x
  11. Brigmon, R. L., H. W. Martin, and H. C. Aldrich. 1997. Biofouling of groundwater systems by Thiothrix spp. Curr. Microbiol. 35: 169-174 https://doi.org/10.1007/s002849900233
  12. Brummer, I. H. M., A. Felske, and I. Sagner-Dobler. 2003. Diversity and seasonal variability of ${\beta}$-proteobacteria in biofilms of polluted rivers: Analysis by temperature gradient gel electrophoresis and cloning. Appl. Environ. Microbiol. 69: 4463-4473 https://doi.org/10.1128/AEM.69.8.4463-4473.2003
  13. Bryers, J. and W. G. Characklis. 1981. Early fouling biofilm formation in a turbulent flow system: Overall kinetics. Water Res. 15: 483-491 https://doi.org/10.1016/0043-1354(81)90059-2
  14. Characklis, W. G. and K. C. Marshall. 1990. Biofilms: A basis for an interdisciplinary approach, pp. 3- 15. In W. G. Characklis and K. C. Marshall (eds.). Biofilms. John Wiley & Sons, New York, U.S.A
  15. Cheong, C. J. 2004. Penetration of dispersed and weathered oil and its ecological implication in model sandy beach. Environ. Eng. Res. 9: 23-30 https://doi.org/10.4491/eer.2004.9.1.023
  16. Cho, K. S., K. C. Ok, Y. H. Joo, K. M. Lee, T. H. Lee, and H. W. Ryu. 2004. Characterization of biofilms occurred in seepage groundwater contaminated with petroleum within an urban subway tunnel. J. Environ. Sci. Health A39: 639-650
  17. Cohen, Y. 2002. Bioremediation of oil by marine microbial mats. Int. Microbiol. 5: 189-193 https://doi.org/10.1007/s10123-002-0089-5
  18. Crump, B. C., E. V. Armbrust, and J. A. Baross. 1999. Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, its estuary, and the adjacent coastal ocean. Appl. Environ. Microbiol. 65: 3192-3204
  19. Dejonghe, W., E. Berteloot, J. Coris, N. Boon, K. Crul, S. Maertens, M. Hofte, P. De Vos, W. Verstraete, and E. M. Top. 2003. Synergistic degradation of linuron by a bacterial consortium and isolation of a single Iinuron-degrading Variovorax strain. Appl. Environ. Microbiol. 69: 1532-1541 https://doi.org/10.1128/AEM.69.3.1532-1541.2003
  20. Dell'Orco, M. J., P. A. Chadik, G. Bitton, and R. P. Neumann. 1998. Sulfide-oxiding bacteria: Their role during air-tripping. JAWWA 90: 107-115
  21. Dunsmore, B. C., A. Jacobsen, L. Hall-Stoodley, C. J. Bass, H. M. Lappin-Scott, and P. Stoodley. 2002. The influence of fluid shear on the structure and material properties of sulphate-reducing bacterial biofilms. J. Ind. Microbiol. Biotechnol. 29: 347-353 https://doi.org/10.1038/sj.jim.7000302
  22. Eikelboom, D. H. 1975. Filamentous organisms observed in activated sludge. Water Res. 9: 365-388 https://doi.org/10.1016/0043-1354(75)90182-7
  23. Engel, A. S., M. L. Porter, B. K. Kincle, and T. C. Kane. 2001. Ecological assessment and geological signitlcance of microbial communities from Cesspool Cave, Virginia. Geomicrobiol. J. 18: 259-274 https://doi.org/10.1080/01490450152467787
  24. Ford, H. W. and D. P. H. Tucker. 1975. Blockage of drip irrigation filters and emitters by iron-sulfur-bacterial products. HortScience 10: 62-64
  25. Friedman, L. and R. Kolter. 2004. Genes involved in matrix formation in Pseudomonas aeruginosa PA 14 biofilms. Mol. Microbiol. 51: 675-690 https://doi.org/10.1046/j.1365-2958.2003.03877.x
  26. Galvan, A., P. Urbina, and F. de Castro. 2000. Characterization of filamentous microorganisms in rotating biological contactor biofilms of wastewater treatment plants. Bioprocess Eng. 22: 257-260 https://doi.org/10.1007/s004490050729
  27. Hekmat, D., A. Feuchtinger, M. Stephan, and D. Vortmeyer. 2004. Microbial composition and structure of a multispecies biofilm from a trickle-bed reactor used for the removal of volatile aromatic hydrocarbons from a waste gas. J. Chem. Technol. Biotechnol. 79: 13-21 https://doi.org/10.1002/jctb.927
  28. Hong, J. H., J. Kim, O. K. Choi, K. S. Cho, and H. W. Ryu. 2005. Characterization of a diesel-degrading bacterium IU5 isolated from oil-contaminated soil. World J. Microbiol. Biotechnol. 21: 381-384 https://doi.org/10.1007/s11274-004-3630-1
  29. Howarth, R., R. F. Unz, E. M. Seviour, R. J. Seviour, L. L. Blackall, R. W. Pickup, J. G. Jones, J. Yaguchi, and I. M. Head. 1999. Phylogenetic relationships of filamentous sulfur bacteria (Thiothrix spp. and Eikelboom type 021N bacteria) isolated from wastewater-treatment plants and description of Thiothrix eikelboomii sp. nov., Thiothrix unzil sp. nov., Thiothrix.fructosivrorans sp. novo and Thiothrix defluvii sp. novo. Int. J. Syst. Bacteriol. 49: 1817-1827 https://doi.org/10.1099/00207713-49-4-1817
  30. Huber, J. A., D. A Butterfield, and J. A. Baross. 2003. Bacterial diversity in a subseatloor habitat following a deep-sea volcanic eruption. FEMS Microbiol. Ecol. 43: 393-409 https://doi.org/10.1111/j.1574-6941.2003.tb01080.x
  31. Hwang, S. C., K. S. Min, and T. J. Cutright. 2004. PAH biodegradation in soil-water suspensions contaminated with waste oil. Environ. Eng. Res. 9: 1-12 https://doi.org/10.4491/eer.2004.9.1.001
  32. Jackson, A. W., J. H. Pardue, and R. Araujo. 1996. Monitoring crude oil mineralization in salt marshes: Use of stable carbon isotope ratios. Environ. Sci. Technol. 30: 1139-1144 https://doi.org/10.1021/es9503490
  33. Jenkins, D., M. Richard, and D. T. Daigger. 1984. Manual on the Causes and Control of Activated Sludge Bulking and Foaming, p. 28. Ridgeline Press, Lafayette, CA
  34. Jeon, C. O., S. H. Woo, and J. M. Park. 2003. Microbial communities of activated sludge performing enhanced biological phosphorus removal in a sequencing batch reactor supplied with glucose. J. Microbiol. Biotechnol. 13: 385-393
  35. Kao, C. M. and J. Prosser. 1999. Intrinsic bioremediation of trichloroethene and chlorobenzene; tleld and laboratory studies. J. Hazard. Mater. 69: 67-79 https://doi.org/10.1016/S0304-3894(99)00060-6
  36. Kim, J. S., S. W. Kwon, F. Jordan, and J. C. Ryu. 2003. Analysis of bacterial community structure in bulk soil, rhizosphere soil, and root samples of hot pepper plants using FAME and 16S rDNA clone libraries. J. Microbiol. Biotechnol. 13: 236-242
  37. Lee, H. S. and K. S. Lee. 2001. Bioremediation of diesel-contaminated soil by bacterial cells transported by electrokinetics. J. Microbiol. Biotechnol. 11: 1038-1045
  38. Lovley, D. R., M. J. Baedecker, D. J. Lognergan, M. Cozzarelli, E. J. Phillips, and D. L. Siegel. 1989. Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339: 297-299 https://doi.org/10.1038/339297a0
  39. Macnaughton, S. J., J. R. Stephen, A. D. Venosa, G. A. Davis, Y. J. Chang, and D. C. White. 1999. Microbial population changes during bioremediation of an experimental oil spill. Appl. Environ. Microbiol. 65: 3566-3574
  40. Muyzer, G., E. C. De Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695- 700
  41. Nadim, F., G. E. Hoag, S. Liu, R. J. Carley, and P. Zack. 2000. Detection and remediation of soil and aquifer systems contaminated with petroleum products: An overview. J. Petrol. Sci. Eng. 26: 169-178 https://doi.org/10.1016/S0920-4105(00)00031-0
  42. Neefs, J. M., Y. Van de peer, L. Hendriks, and R. De Wachter. 1990. Compilation and small ribosomal subunit RNA sequences. Nucleic Acids Res. 18: 2237-2317 https://doi.org/10.1093/nar/18.suppl.2237
  43. Oh, Y. S., D. S. Sim, and S. J. Kim. 2003. Effectiveness of bioremediation on oil-contaminated sand in intertidal zone. J. Microbiol. Biotechnol. 13: 437-443
  44. O'Sullivan, L. A., A. J. Weightman, and J. C. Fry. 2002. New degenerate Cytophaga-Flexibacter-Bacteroides-specific 16S ribosomal DNA-targeted oligonucleotide probes reveal high bacterial diversity in River Taft epilithon. Appl. Environ. Microbiol. 68: 201-210 https://doi.org/10.1128/AEM.68.1.201-210.2002
  45. Pellegrin, V., S. Juretschko, M. Wagner, and G. Cottenceau. 1999. Morphological and biochemical properties of a Sphaerotilus sp. isolated from paper mill slimes. Appl. Environ. Microbiol. 65: 156-162
  46. Picologlou, B. F, N. Zelver, and W. G. Characklis. 1980. Biotilm growth and hydraulic performance. J. Hydraul. Div. ASCE 106: 733-746
  47. Pinhassi, J. and T. Berman. 2003. Differential growth response of colony-forming ${\alpha}$- and ${\gamma}$-Proteobacteria in dilution culture and nutrient addition experiments from Lake Kinneret (Israel), the Eastern Mediterranean Sea, and the Gulf of Eilat. Appl. Environ. Microbiol. 69: 199-211 https://doi.org/10.1128/AEM.69.1.199-211.2003
  48. Rossetti, S., L. Blackall, C. Levantesi, D. Uccelletti, and V. Tandoi. 2003. Phylogenetic and physiological characterization of a heterotrophic, chemolithoautotrophic Thiothrix strain isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 53: 1271-1276 https://doi.org/10.1099/ijs.0.02647-0
  49. Safade, T. L. 1998. Tackling the slime problem in a paper-mill. Paper Technol. Ind. 29: 280-285
  50. Sorkhoh, N., R. AI-Hasan, S. Radwan, and T. Hopner. 1992. Self-cleaning of the Gulf. Nature 359: 109
  51. Stoodley, P., Z. Lewandowski, J. D. Boyle, and H. M. Lappin-Scott. 1998. Oscillation characteristics of biofilm streamers in turbulent tlowing water as related to drag and pressure drop. Biotechnol. Bioeng. 57: 536-544 https://doi.org/10.1002/(SICI)1097-0290(19980305)57:5<536::AID-BIT5>3.0.CO;2-H
  52. van Veen, W. L., E. G. Mulder, and M. H. Deinema. 1978. The Sphaerotilus-Leptothrix group of bacteria. Microbiol. Rev. 42: 329-356
  53. Venosa, A. D., M. T. Suidan, B. A. Wrenn, K. L. Strohmeier, J. P. Haines, B. L. Eberhart, D. King, and E. Holder. 1996. Bioremediation of an experimental oil spill on the shoreline of Delaware Bay. Environ. Sci. Technol. 30: 1764-1775 https://doi.org/10.1021/es950754r
  54. Whiteley, A. S. and M. J. Bailey. 2000. Bacterial community structure and physiological state within an industrial phenol bioremediation system. Appl. Environ. Microbiol. 66: 2400-2407 https://doi.org/10.1128/AEM.66.6.2400-2407.2000
  55. Williams, T. M., R. F. Unz, and J. T. Doman. 1987. Ultrastructure of Thiothrix spp. and 'type 021 N' bacteria. Appl. Environ. Microbiol. 53: 1560-1570
  56. Wilson, S. R. and J. R. Wharfe. 1989. Application of microscopic examination of activated sludge to operational control. Water Res. 23: 15-22 https://doi.org/10.1016/0043-1354(89)90055-9
  57. Wobus, A., C. Bleul, S. Maassen, C. Scheerer, M. Schuppler, E. Jacobs, and I. Roske. 2003. Microbial diversity and functional characterization of sediments from reservoirs of different trophic state. FEMS Microbiol. Ecol. 46: 331-347 https://doi.org/10.1016/S0168-6496(03)00249-6
  58. Zilles, J. L., J. Peccia, M. W. Kim, C. H. Hung, and D. R. Noguera. 2002. Involvement of Rhocyclus-related organisms in phosphorus removal in full-scale wastewater treatment plants. Appl. Environ. Microbiol. 68: 2763-2769 https://doi.org/10.1128/AEM.68.6.2763-2769.2002