DOI QR코드

DOI QR Code

Effect of Grain Size on Nanostructured Fe-20 wt.%Si Alloy Powders Produced by High-energy ball milling

고에너지 볼밀링으로 제조된 나노구조 Fe-20 wt.%Si 합금 분말의 자성 특성에 미치는 결정립 크기의 영향

  • Kim, Se-Hoon (Division of Materials Science and Engineering, Hanyang University) ;
  • Lee, Young Jung (Division of Materials Science and Engineering, Hanyang University) ;
  • Lee, Baek-Hee (Division of Materials Science and Engineering, Hanyang University) ;
  • Lee, Kyu Hwan (Future Technology Research Division, Korea Institute of Science and Technology) ;
  • Kim, Young Do (Division of Materials Science and Engineering, Hanyang University)
  • Published : 2005.10.01

Abstract

The structural and magnetic properties of nanostructued Fe-20 ;wt.%Si alloy powders were investigated. Commercial Fe-20 wt.%Si alloy powders (Hoeganaes Co., USA) with 99.9% purities were used to fabricate the nanostructure Fe-Si alloy powders through a high-energy ball milling process. The alloy powders were fabricated at 400 rpm for 50 h, resulting in an average grain size of 16 nm. The nanostructured powder was characterized by fcc $Fe_{3}Si$ and hcp $Fe_{5}Si_3$ phases and exhibited a minimum coercivity of approximately 50 Oe.

Keywords

References

  1. J. Smit : Magnetic Properties of Materials, McGraw-Hill, New York, 1971
  2. J. Ding, Y. Li, L. F. Chen, C. R. Deng, Y. Shi, Y. S. Chow and T. B. Gang : J. Alloys Compd. 314 (2001) 262 https://doi.org/10.1016/S0925-8388(00)01234-2
  3. B. Zuo, N. Saraswati, T. Sritharan and H. H. Hng : Mater. Sci. Eng. A 371 (2004) 210-216 https://doi.org/10.1016/j.msea.2003.11.046
  4. R. C. O. Handley : J. Appl. Phys. 62 (1987) R15 https://doi.org/10.1063/1.339065
  5. G. Herzer : IEEE Trans. Mag. 25 (1989) 3327 https://doi.org/10.1109/20.42292
  6. G. Herzer : J. Mag. Mag. Mater. 112 (1992) 258 https://doi.org/10.1016/0304-8853(92)91168-S
  7. G. Herzer : J. Mag. Mag. Mater. 157/158 (1996) 133 https://doi.org/10.1016/0304-8853(95)01126-9
  8. B. D. Cullity and C. D. Graham : Introduction to Magnetic Materials, Wesley-IEEE, 2006
  9. B. H. Lee, S. S. Hong, K. H. Lee and Y. D. Kim : J. Alloys Compd. 385 (2004) 264 https://doi.org/10.1016/j.jallcom.2004.03.140
  10. R. H. Yu, S. Basu, Y. Zhang and J. Q. Xiao : J. Appl. Phys. 85 (2000) 6034 https://doi.org/10.1063/1.369073
  11. A. Makino, A. Inoue and T. Masumoto : Mater. Trans. JIM 36 (1995) 924 https://doi.org/10.2320/matertrans1989.36.924
  12. H. J. Fecht : Nanostruct. Mater. 6 (1995) 33-42 https://doi.org/10.1016/0965-9773(95)00027-5
  13. X. Y. Qin and J. S. Lee : J. Appl. Phys. 86(4) (1999) 2146- 2154 https://doi.org/10.1063/1.371022
  14. C. C. Koch, O. B. Cavin and C. G. Mckamey : J.O. Scarbrough, Appl. Phys. Lett. 43 (1983) 1017 https://doi.org/10.1063/1.94213
  15. J. S. Benjamin and T. E. Volvin : Metall. Trans. 5(1974) 1929 https://doi.org/10.1007/BF02644161
  16. G. K. Williamson and W. H. Hall : Acta Metal. 1(1953) 22 https://doi.org/10.1016/0001-6160(53)90006-6
  17. B. D. Cullity : Elements of X-ray Diffraction, Addison- Wesley, 1978
  18. Joint Committee for Powder Diffraction Standard (JCPDS), #451207
  19. Joint Committee for Powder Diffraction Standard (JCPDS), #380438
  20. Z. H. Wang, C. J. Choi, B. K. Kim, J. C. Kim and Z. D. Zhang : J. Alloys Comp. 351 (2003) 319 https://doi.org/10.1016/S0925-8388(02)01072-1
  21. M. Li, R. Birringer, W. L. Johnson and R. D. Shull : Nanostruct. Mat. 3 (1993) 407 https://doi.org/10.1016/0965-9773(93)90106-L
  22. L.K. Varga, F. Mazaleyrat, J. Kovac and A. Kakay : J. Magn. Magn. Mat. 215-216 (2000) 121 https://doi.org/10.1016/S0304-8853(00)00091-3
  23. T. Zhou, J. Zhang, J. Xu, Z. Yu, G. Gu, D. Wang, H. Huang, Y. Du, J. Wang and Y. Jiang : J. Magn. Magn. Mat. 164 (1996) 219 https://doi.org/10.1016/S0304-8853(96)00384-8