DOI QR코드

DOI QR Code

Fully Porous and Porous Surfaced Ti-6Al-4V Implants Fabricated by Electro-Discharge-Sintering: (1) Fabrication Method and Fundamental Characteristics

전기방전소결에 의해 제조된 다공성 및 다공성 표면을 갖는 Ti-6Al-4V 임플란트 : (1) 제조방법 및 기본적 특성

  • Hyun, C. Y. (Department of Materials Engineering, Seoul National University of Technology) ;
  • Huh, J. K. (Department of Materials Engineering, Seoul National University of Technology) ;
  • Lee, W. H. (Department of Advanced Materials Engineering, Sejong University)
  • 현창용 (서울산업대학교 신소재공학과) ;
  • 허재근 (서울산업대학교 신소재공학과) ;
  • 이원희 (세종대학교 신소재공학과)
  • Published : 2005.10.01

Abstract

Implant prototypes with various porosities were fabricated by electro-discharge-sintering of atomized spherical Ti-6Al-4V powders. Single pulse of 0.75 to 2.0 kJ/0.7 g-powder, using 150, 300, and $450{\mu}F$ capacitors was applied to produce a fully porous and porous surfaced implant compact. The solid core formed in the center of the compact after discharge was composed of acicular ${\alpha}+{\beta}$ grains and porous layer consisted of particles connected in three dimensions by necks. The solid core and neck sizes increased with an increase in input energy and capacitance. On the other hand, pore volume decreased with increased capacitance and input energy due to the formation of solid core. Capacitance and input energy are the only controllable discharge parameters even though the heat generated during a discharge is the unique parameter that determines the porosity of compact. It is known that electro-discharge-sintering of spherical Ti-6Al-4V powders can efficiently produce fully-porous and porous surfaced Ti-6Al-4V implants with various porosities in a short time less then 400 isec by manipulating the discharging condition such as input energy and capacitance including powder size.

Keywords

References

  1. M. Spector : Biocompatibility of Orthopedic Implants, D. F. Williams (Ed.), CRC Press, Boca Raton (1982) 55
  2. M. Spector : Biocompatibility of Orthopedic Implants, D. F. Williams (Ed.), CRC Press, Boca Raton (1982) 89
  3. H. Q. Nguyen, D. A. Deporter, P. M. Pilliar, N. Valiquette and R. Yakubovich : Biomater., 25(5) (2004) 865 https://doi.org/10.1016/S0142-9612(03)00607-0
  4. V. Amigo, M. D. Salvador, F. Romero, C. Solves and J. F. Moreno : J. Mater. Proc. Technol., 14(1) (2003) 117 https://doi.org/10.1016/S0924-0136(03)00243-7
  5. K. Asaoka, N. Kuwayama, O. Okuno and I. Miura : J. Biomed. Mater. Res., 19 (1985) 699 https://doi.org/10.1002/jbm.820190609
  6. S. Yue, R. M. Pillar and G. C. Weatherly : J. Biomed. Mater. Res., 18 (1984) 1043 https://doi.org/10.1002/jbm.820180908
  7. R. M. Pilliar : J. Biomed. Mater. Res., 21 (1987) 1 https://doi.org/10.1002/jbm.820210106
  8. K. Okazaki, W.H. Lee, D.K. Kim and R.A. Kopczyk : J. Biomed. Mater. Res., 25 (1991) 1417 https://doi.org/10.1002/jbm.820251202
  9. J. T. Dominici, P. J. Sammon, J. F. Drummond, M. I. Lifland, R. Geissler, and K. Okazaki : J. Oral Implantol ., 20 (1994) 299
  10. J. F. Drummond, J. T. Dominici, P. J. Sammon, K. Okazaki, R. Geissler, M.I. Lifland, S. A. Anderson, and W. Renshaw : J. Oral Implantol., 21 (1995) 295
  11. W. H. Lee and D.A. Puleo : J. Mater. Sci. Letter, 18(10) (1999) 817 https://doi.org/10.1023/A:1006653503849
  12. W. H. Lee, J. W. PArk, D. A. Puleo and J. Y. Kim : J. Mater. Sci., 35 (2000) 593 https://doi.org/10.1023/A:1004768125476
  13. W. H. Lee and J. W. Park : J. Mater. Sci., Letters, 19(11) (2000) 925 https://doi.org/10.1023/A:1006795500566
  14. W. H. Lee, S. J. Kim, W. J. Lee, C. S. Byun, D. K. Kim, J. Y. Kim, C. Y. Hyun, J. G. Lee and J. W. Park : J. Mater. Sci., 36 (2001) 3573 https://doi.org/10.1023/A:1017905305737