DOI QR코드

DOI QR Code

Increased Salinity Tolerance of Cowpea Plants by Dual Inoculation of an Arbuscular Mycorrhizal Fungus Glomus clarum and a Nitrogen-fixer Azospirillum brasilense

  • Rabie, G.H. (Botany Department, Faculty of Science, Zagazig Univ.) ;
  • Aboul-Nasr, M.B. (Botany Department, Faculty of Science, South Valley University) ;
  • Al-Humiany, A. (Science Department, Taief Teacher's College)
  • Published : 2005.03.30

Abstract

Pot greenhouse experiments were carried out to attempt to increase the salinity tolerance of one of the most popular legume of the world; cowpea; by using dual inoculation of an Am fungus Glomus clarum and a nitrogen-fixer Azospirillum brasilense. The effect of these beneficial microbes, as single- or dual inoculation-treatments, was assessed in sterilized loamy sand soil at five NaCl levels ($0.0{\sim}7.\;2ds/m$) in irrigating water. The results of this study revealed that percentage of mycorrhizal infection, plant height, dry weight, nodule number, protein content, nitrogenase and phosphatase activities, as well as nutrient elements N, P, K, Ca, Mg were significantly decreased by increasing salinity level in non-mycorrhized plants in absence of NFB. Plants inoculated with NFB showed higher nodule numbers, protein content, nitrogen concentration and nitrogenase activities than those of non-inoculated at all salinity levels. Mycorrhized plants exhibited better improvement in all measurements than that of non-mycorrhized ones at all salinity levels, especially, in the presence of NFB. The concentration of $Na^+$ was significantly accumulated in cowpea plants by rising salinity except in shoots of mycorrhizal plants which had $K^+/Na^+$ ratios higher than other treatments. This study indicated that dual inoculation with Am fungi and N-fixer Azospirillum can support both needs for N and P, excess of NaCl and will be useful in terms of soil recovery in saline area.

Keywords

References

  1. Adiku, G., Renger, M., Wessolek, G., Facklam, M. and HechBucholtz. C. 2001. Stimulation of dry matter production and seed yield of common beans under varying soil water and salinity conditions. Agric. Water Manag. 47: 55-68 https://doi.org/10.1016/S0378-3774(00)00094-9
  2. AI-Karaki, G. N., Hammad, R. and Rusan, M. 2001. Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11: 41-47
  3. Allen, S. F., Grimshaw, H. F. and Rowl, A. B. 1984. Chemical analysis. In: Methods in plant ecology. Pp. 185-344. Eds. Moore P. D. and Chapman, S. B. Blackwell Oxford
  4. Bayuelo-Jimenez, J., Debouck, D. G. and Lynch, J. P. 2003. Growth, gas exchange, water relations and ion composition of Phaseolus species grown under saline conditions. Field Crop Res. 80: 207-222 https://doi.org/10.1016/S0378-4290(02)00179-X
  5. Biro. B., Koves-Pechy, K., Voros, I., Takacs, T., Eggenberger, P. and Strasser, R. J. 2000. Interrelations between Azospuillum and Rhizobium nitrogen-fixers and arbuscular mycorrhizal fungi in the rhizosphere of alfalfa in sterile, AMF-free or normal soil conditions App. Soil Ecol. 15: 159-168 https://doi.org/10.1016/S0929-1393(00)00092-5
  6. Bohrer, G., Kagan-Zur, V., Roth-Bejerano, N., Ward, D., Beck, G. and Bonifacio, E. 2003. Effects of different Kalahari-desert VA mycorrhizal communities on mineral acquisition and depletion from the soil by host plants. J. Arid Environ. 55: 193-208 https://doi.org/10.1016/S0140-1963(03)00047-8
  7. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing theprincipal of protein- dye binding. Annal Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  8. Burke, D. J., Hamerlynck, E. P. and Hahn, D. 2003. Interactions between the salt marsh grass Spartina patens, arbuscular mycorrhizal fungi and sediment bacteria during the growing season. Soil BioI. Biochem. 35: 501-511 https://doi.org/10.1016/S0038-0717(03)00004-X
  9. Copeman, R. H., Martin, C. A. and Stutz, J. C. 1996. Tomato growth in response to salinity and mycorrhizal fungi from saline or nonsaline soil. Hort. Sci. 31: 341-344
  10. Cordovilla, M. P., Ligero, F and Lluch, C. 1994. The effect of salinity on N fixation and assimilation in Vicia faba. J. Exp. Bot. 45: 1483-1488 https://doi.org/10.1093/jxb/45.10.1483
  11. Cordovilla, M. P., Ocana, A., Ligero, F and Lluch, C. 1995. Salinity effects on growth analysis and nutrient composition in four grain legumes-Rhizobium symbiosis. J. Plant Nutr. 18: 1595-1609 https://doi.org/10.1080/01904169509365006
  12. Csonka, L. N. and Hanson, A. D. 1991. Prokaryotic osmoregulation: genetics and physiology. Annu. Rev. Plant Physiol. 45: 569-606
  13. Delgado, M. J., Ligero, F and Lluch, C. 1994. Effects of salt stress on growth and nitrogen fixation by pea, faba-bean, common bean and soybean plants. Soil. Biol. Biochem. 26: 371-376 https://doi.org/10.1016/0038-0717(94)90286-0
  14. Dobereiner, J. 1978. Influence of environmental factor on the occurrence of S. lipoferum in soil and roots. In: Environmental role of N, nfixing blue green algae and symbiotic bacteria. Ecol. Bull. (Stockholm) 26: 343-352
  15. EI-Mokadem, M. T, Helemish, F A., Abdel-Wahab, S. M. and Abou-El-Nour, M. M. 1991. Salt response of clover and alfalfa inoculated with salt tolerant strains of Rhizobium. Ain Shams Sci. Bull. 28B: 441-468
  16. Feng, G., Zhang, F S., Li, X. L., Tian, C. Y, Tang, C. and Rengel, Z. 2002. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12: 185-190 https://doi.org/10.1007/s00572-002-0170-0
  17. Fischer, S., Elizabeth, Miguel M. J. and Mori, G. B. 2003. Effect of root exudates on the exopolysaccharide composition and the lipopolysaccharide profile of Azospirillum brasilense Cd under saline stress. FEMS Microbiol. Lett. 219: 53-62 https://doi.org/10.1016/S0378-1097(02)01194-1
  18. Georgiev, G. I. and Atkias, C. A. 1993. Effects of salinity on N, fixation, nitrogen metabolism and export and diffusive conductance of cowpea root nodules. Symbiosis 15: 239-255
  19. Gianinazzi-Pearson, V. and Gianinazzi, S. 1976. Enzymatic studies on the metabolism on Vesicular arbuscular mycorrhiza, Effect of mycorrhiza formation and phosphorus nutrition on soluble phosphatase activities in onion roots. Physiol. Veg. 14: 833-841
  20. Giller, K. E. and Cadish, G. 1995. Future benefits from biological nitrogen fixation: an approach to agriculture. Plant Soil 174: 255-277 https://doi.org/10.1007/BF00032251
  21. Glenn, E. P, Brown, J. J. and Blumwald, E. 1999. Salt tolerance and crop potential of halophytes. Crit. Rev. Plant Sci. 18: 227-255 https://doi.org/10.1016/S0735-2689(99)00388-3
  22. Hardy, R, Bums, R. and Holsten, R. 1973. Applications of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil BioI. Biochem. 5: 47-81 https://doi.org/10.1016/0038-0717(73)90093-X
  23. Hirrel, M. C. 1981. The effect of sodium and chloride salts on the germination of Gigaspora margaria. Mycology 43: 610-617
  24. Jackson, M. L. 1967. Soil chemical Analysis. Prence Hall of India Ltd, New Delhi, India
  25. Jackson, N. F, Miller, R. H. and Forkiln, R. E. 1973. Soil chemical analysis. Prentic-Hall of India Private & Ltd. New Delhi, 2nd Indian Rep
  26. Jha, D. K., Sharma, G. D. and Mishra, R. R. 1993. Mineral nutrition in the tripartite interaction between Frankia, Glomus and Alnus at different soil phosphorus regimes. New Phytol. 123: 307-311 https://doi.org/10.1111/j.1469-8137.1993.tb03740.x
  27. Johansson, J. F., Paul, L. R. and Finlay, R. D. 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbial. Ecol. 48: 1-13 https://doi.org/10.1016/j.femsec.2003.11.012
  28. Juniper, S. and Abbott, L. 1993. Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza 44: 45-57
  29. Khan, M. and Unger, J. 2000. Effect of salinity on growth water relation and ion accumulation of subtropical perennial Halophyte, Atriplex graffithii Var. stocksii. Annals of Bot. 85: 225-232 https://doi.org/10.1006/anbo.1999.1022
  30. Lesueur, D, Ingleby, K., Odee, D., Chamberlain, J. Wilson, J., Manga, T. T, Sarrailh, J. M. and Pottinger, A. 2001. Improvement of forage production in Calliandra calothyrsus: methodology for the identification of an effective inoculum containing Rhizobium strains and arbuscular mycorrhizal isolates. J. Biotech. 91: 269-282 https://doi.org/10.1016/S0168-1656(01)00328-5
  31. Maayhuis, F. J. M. and Amtmann, A. 2004. $K^{+}$ Nutrition and $Na^{+}$ toxicity: The basic of cellular $K^{+}$/$Na^{+}$ ratios. Annals Botany. 84: 123-133 https://doi.org/10.1006/anbo.1999.0912
  32. Marschner, H. 1995. Saline soil. Pp. 567-680. IN: Mineral nutrition of higher plants. Academic press, New York
  33. McMillen, B. G., Juniper, S. and Abbott, L. K. 1998. Inhibition of hyphal growth of a vesicularfiarbuscular mycorrhizal fungus in soil containing sodium chloride limits the spread of infection from spores. Soil BioI. Biochem. 30: 1639-1646 https://doi.org/10.1016/S0038-0717(97)00204-6
  34. Minerdi, D., Fani, R., Gallo, R, Boarino, A., Bonfante, P. and Munns, R. 1993. Physiological processes limiting plant growth in saline soils some dogmas and hypotheses. Plant Cell Enviroll. 16: 15-24 https://doi.org/10.1111/j.1365-3040.1993.tb00840.x
  35. Minerdi, D., Fani, R., Gallo, R, Boarino, A., and Munns, R. 2000. Nitrogen Fixation genes in an endosymbiotic Burkholderia strain. Appl. Environ. Microbiol. 67: 725-732 https://doi.org/10.1128/AEM.67.2.725-732.2001
  36. Muscolo, A., Panuccio, M. R. and Sidari, M. 2003. Effects of salinity on growth, carbohydrate metabolism and nutritive properties of KiKuyu grass (Pennisetum clandestinum Hochst). Plant science 164: 1103-1110 https://doi.org/10.1016/S0168-9452(03)00119-5
  37. Naidoo, G. and Naidoo. Y. 2001. Effect of salinity and nitrogen on growth, ion relations and proline accumulation in Triglochin bulbosa. Wetland Ecol. Managem. 9: 491-497 https://doi.org/10.1023/A:1012284712636
  38. Netondo, G. W., Onyango, J. C. and Beck, E. 2004. Sorghum and salinity. Crop Science 44: 797-805 https://doi.org/10.2135/cropsci2004.0797
  39. Okon, Y. and Vanderleyden, J. 1997 Root-associated Azospirillum species can stimulate plants. ASM News 63: 366-370
  40. Pfeiffer, C. M. and Bloss. H. E. 1988. Growth and nutrition ofguayule tParthenium argentatum) in a saline soil as influenced by vesiculaniarbuscular mycorrhiza andphosphorus fertilization. New Phytol. 108: 315-321 https://doi.org/10.1111/j.1469-8137.1988.tb04168.x
  41. Phillips, J. and Hayman, D. 1970. Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55: 158-161 https://doi.org/10.1016/S0007-1536(70)80110-3
  42. Piper, C. S. 1950. Soil and plant analysis. Inter. Sci. Publ., New York
  43. Puppi, G., Azcon, R. and Hoflich, G. 1994. Management of positive interactions of arbuscular mycorrhizal fungi with essential groups of soil microorganisms. pp. 201-215. In: Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems. Gianinazzi, S. and Schouepp, H., Eds
  44. Rabie, G. H. and Al-Humiany, A. 2004. Role of VA- mycorrhiza on the growth of cowpea plant and their associative effect with N,-fixing and P-solubilizing bacteria as biofertilizers in calcareous soil. Food, Agric. Environ. 2: 185-191
  45. Rabie, G. H. 2005. Influence of VA-mycorrhizal fungi and kinetin on the response of mungbean plants to irrigation with seawater. Mycorrhiza (in press)
  46. Rao, D. L. N. 1998. Biological amelioration of salt-affected soils. pp. 21-238. In: Microbial Interactions in Agriculture and Forestry, vol. 1. Science Publishers, Enfield, USA
  47. Rao, A. V. and Tak, R. 2002. Growth of different tree species and their nutrition uptake in limestone mine spoil as influenced by arbuscular mycorrhizal (AM) fungi in India arid zone. J. Arid Environ. 51: 113-119 https://doi.org/10.1006/jare.2001.0930
  48. Ruiz-Lozano, J. M., Azcon, R. and Gomez, M. 1996. Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. Physiol. Plant. 98: 767-772 https://doi.org/10.1111/j.1399-3054.1996.tb06683.x
  49. Saini, V. K., Bhandari, S. C. and Tarafdar, J. C. 2004. Comparison of crop yield, soil microbial C, Nand P, N-fixation, nodulation and mycorrhizal infection in inoculated and noninoculated sorghum and chickpea crops. Field Crops Res. 89: 39-47 https://doi.org/10.1016/j.fcr.2004.01.013
  50. Singh, R. P., Choudhary, A., Gulati, A., Dahiya, H. C., Jaiwal, P. K. and Sengar, R. S. 1997. Response of plants to salinity in interaction with other a biotic and factors. pp. 25-39. In: Jaiwal, P. K., Singh, R. P., Gulati, A. Eds. Strategies for Improving Salt tolerance in Higher Plants. Science Publishers, Enfield, USA
  51. Steel, R. G. D. and Torrie, J. H. 1960. Principals and procedures of statistics. McGraw Hill, New York
  52. Tian, C., He, X., Zhong, Y. and Chen, J. 2002. Effects of VA- mycorrhizae and Frankia dual inoculation on growth and nitrogen fixation of Hippophae tibetana. Forest Ecol. Managem. 170: 307-312 https://doi.org/10.1016/S0378-1127(01)00781-2
  53. Tain, C. Y., Feng, G., Li, X. L. and Zhang, F. S. 2004. Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. Appl. Soil Ecol. 26: 143-148 https://doi.org/10.1016/j.apsoil.2003.10.010
  54. Tomar, O. S., Minhas, P S., Sharma, V. K. and Gupt, R. J. K. 2003. Response of nine forage grasses to saline irrigation and its schedules in a semi-arid climate of north-west India. J. Arid Environ. 55: 533-544 https://doi.org/10.1016/S0140-1963(02)00285-9
  55. Trouvelot, A., Kough, J. and Gianinazzi-Pearson, V. 1986. Measure des taux de mycorhization VA d' UN system radiculaire. Recherche de methode d' estimation ayant une signification fonctionnelle. In: Netical aspects of mycorrhizae. Pp. 217-221. Institut National de la Recherche Agronomique. Press, Paris
  56. Valdes, M. and Sanchez-Francia, D. 1996. Response of Alnus and Casuarina to endomycorrhizal inoculation. Rev. Mexicana Microbiol. 12: 65-67
  57. Veatch, M. E., Smith, S. E. and Vandemark, F. 2004. Shoot biomass productions of Medicago truncatula Exposed to NaCl. Crop Sci. 44: 1008-1013 https://doi.org/10.2135/cropsci2004.1008
  58. Yano-Melo, A. M., Saggin, O. J. and Maia, L. C. 2003. Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agric. Ecosyst. Environ. 95: 343-348 https://doi.org/10.1016/S0167-8809(02)00044-0
  59. Zahran, H. H. and Abu-Gharbia, M. A. 1995. Development and structure of bacterial root-nodules of two Egyptian cultivars of Vicia faba L. under salt and water stresses. Bull. Fac. Sci. Assiut Univ. 24: 1-10
  60. Zahran, H. H. 1999. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Molecular Bioi Rev. 63: 968-989
  61. Zandavalli, R. B., Dillenburg, L. R. and Paulo, V. D. 2004. Growth responses of Araucaria angustifolia (Araucariaceae) to inoculation with the mycorrhizal fungus Glomus clarum. Appl. Soil Ecol. 25(3): 245-255 https://doi.org/10.1016/j.apsoil.2003.09.009
  62. Zou, N., Dort, P. J. and. Marcar, N. E. 1995. Interaction of salinity and rhizobial strains on growth and N, fixation by Acacia ampliceps. Soil BioI. Biochem. 27: 409-413 https://doi.org/10.1016/0038-0717(95)98611-Q

Cited by

  1. Alleviation of salt stress of symbiotic Galega officinalis L. (goat's rue) by co-inoculation of Rhizobium with root-colonizing Pseudomonas vol.369, pp.1-2, 2013, https://doi.org/10.1007/s11104-013-1586-3
  2. New Insights on Plant Salt Tolerance Mechanisms and Their Potential Use for Breeding vol.7, pp.1664-462X, 2016, https://doi.org/10.3389/fpls.2016.01787
  3. Paxillus involutus mycorrhiza attenuate NaCl-stress responses in the salt-sensitive hybrid poplar Populus×canescens vol.17, pp.2, 2007, https://doi.org/10.1007/s00572-006-0084-3
  4. Spore associated bacteria regulates maize root K+/Na+ ion homeostasis to promote salinity tolerance during arbuscular mycorrhizal symbiosis vol.18, pp.1, 2018, https://doi.org/10.1186/s12870-018-1317-2