X-ray Diffraction Studies of Poly(aryl ether ether ketone) Fibers with Different Degrees of Crystallinity and Orientation

  • Karacan Ismail (Department of Textile Engineering, Faculty of Engineering, University of Erciyes)
  • Published : 2005.09.01

Abstract

Structural studies of series of 'as spun' and drawn PEEK fibers have been carried out using X-ray diffraction and optical microscopy techniques. The analysis of results suggest that fibers produced at a constant draw ratio with increasing draw temperatures show enhanced orientation and crystalline behaviour. The resolved equatorial and meridional traces provide additional structural parameters in terms of crystallinity, crystallite size, and crystallite thickness. It is concluded that drawing at a temperature below $T_g(i.e.,\;144^{\circ}C)$ results in poorly oriented non-crystalline materials, whereas drawing above $T_g$ results in highly oriented semi crystalline materials. Additional drawing proved to increase the overall orientation with slight improvements in lateral order of the chain molecules. Quantitative analysis revealed that the crystallite size increases with increasing drawing temperature. The results also revealed the increased crystallite size upon additional drawing. Crystalline orientation parameter, $_c$, suggests almost perfect orientation. In all cases, the amorphous orientation is found to be lower than the overall orientation parameter obtained from the optical birefringence. As a result of additional drawing, crystalline orientation was found to increase slightly but the increase in the orientation of non-crystalline material was found to be substantial. An average crystalline density was determined from the orthorhombic unit cell dimensions. It was found to vary as a result of processing conditions. It was also found that the value of the maximum birefringence shows heavy dependence on the chain conformation.

Keywords

References

  1. P. J. Hine, B. Brew, R. A. Ducket, and I. M. Ward, Comp. Sci. Tech., 40, 47 (1991) https://doi.org/10.1016/0266-3538(91)90042-N
  2. C. C. Jeng and M. Chen, Comp. Sci. Tech., 60, 1863 (2000) https://doi.org/10.1016/S0266-3538(00)00076-2
  3. P. Werner, V. Altstadt, R. Jaskulka, O. Jacobs, J. K. Sandler, M. S. P. Shaffer, and A. H. Windle, Wear, 257, 1006 (2004) https://doi.org/10.1016/j.wear.2004.07.010
  4. D. J. Blundell and B. N. Osborn, Polymer, 24, 953 (1983) https://doi.org/10.1016/0032-3861(83)90144-1
  5. J. N. Hay, D. J. Kemmish, J. I. Langford, and I. M. Rae, Polymer (Commun.), 25, 175 (1984)
  6. N. T. Wakelyn, Polymer (Commun.), 25, 306 (1984)
  7. J. N. Clark, F. G. Herring, and N. R. Jagannathan, Polymer(Commun.), 26, 329 (1985)
  8. R. H. Olley, D. C. Bassett, and D. J. Blundell, Polymer, 27, 344 (1986) https://doi.org/10.1016/0032-3861(86)90061-3
  9. S. Kumar, D. P. Anderson, and W. W. Adams, Polymer, 27, 329 (1986) https://doi.org/10.1016/0032-3861(86)90061-3
  10. T. Susaga and M. Hagiwara, Polymer, 27, 821 (1986) https://doi.org/10.1016/0032-3861(86)90061-3
  11. P. C. Dawson and D. J. Blundell, Polymer, 21, 577 (1980) https://doi.org/10.1016/0032-3861(80)90228-1
  12. O. Yoda, Polymer (Commun.), 25, 238 (1984)
  13. O. Yoda, Polymer (Commun.), 26, 16 (1985)
  14. T. Kunugi, A. Mizushima, and T. Hayakawa, Polymer(Commun.), 27, 175 (1986)
  15. D. R. Rueda, F. Ania, A. Richardson, I. M. Ward, and F. J. B. Calleja, Polymer (Commun.), 24, 258 (1983)
  16. Y. Ohkoshi, H. Ohshima, T. Matsuhisa, K. Toriumi, and A. Kondo, Sen-i Gakkaishi, 45, 509 (1989) https://doi.org/10.2115/fiber.45.12_509
  17. Y. Ohkoshi, H. Ohshima, T. Matsuhisa, K. Toriumi, and A. Kondo, Sen-i Gakkaishi, 46, 87 (1990) https://doi.org/10.2115/fiber.46.3_87
  18. A. M. Voice, D. I. Bower, and I. M. Ward, Polymer, 34, 1154 (1993) https://doi.org/10.1016/0032-3861(93)90766-4
  19. A. J. Lovinger and D. Davis, Polymer (Commun.), 26, 322 (1985)
  20. T. E. Attwood, P. C. Dawson, J. L. Freeman, L. R. J. Hoy, J. B. Rose, and P. A. Staniland, Polymer, 22, 1096 (1981) https://doi.org/10.1016/0032-3861(81)90299-8
  21. V. L. Rao, P. U. Sabeena, A. Saxena, C. Gopalakrishnan, K. Krishnan, P. V. Ravindran, and K. N. Ninan, Eur. Poly. J., 40, 2645 (2004) https://doi.org/10.1016/j.eurpolymj.2004.07.002
  22. F. J. Medellin-Rodriguez and P. J. Phillips, Polym. Eng. Sci., 30, 860 (1990) https://doi.org/10.1002/pen.760301409
  23. J. Devaux, D. Delimoy, D. Daoust, R. Legras, J. P. Mercier, C. Strazielle, and E. Nield, Polymer, 26, 1994 (1985) https://doi.org/10.1016/0032-3861(85)90179-X
  24. A. V. Fratini, E. M. Cross, R. B. Whitaker, and W. W. Adams, Polymer, 27, 861 (1986) https://doi.org/10.1016/0032-3861(86)90061-3
  25. J. Boon and E. P. Magre, Die Makromolekulare Chemie, 126, 130 (1969) https://doi.org/10.1002/macp.1969.021260115
  26. T. Liu, S. Wang, Z. Mo, and H. Zhang, J. Appl. Poly. Sci., 73, 237 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990711)73:2<237::AID-APP10>3.0.CO;2-L
  27. J. N. Hay, J. I. Langford, and J. R. Lloyd, Polymer, 30, 489 (1989) https://doi.org/10.1016/0032-3861(89)90019-0
  28. D. J. Blundell and J. D'Mello, Polymer, 32, 304 (1991) https://doi.org/10.1016/0032-3861(91)90018-E
  29. A. M. Hindeleh, D. J. Johnson, and P. E. Montague in 'Fibre Diffraction Methods', (A. D. French and K. H. Gardner Eds.), p.149, ACS Symp. No. 141, American Chemical Society, Washington DC, 1983
  30. A. R. Stokes, Proc. Phys. Soc., A166, 283 (1948)
  31. W. Ruland, J. Appl. Phys., 38, 3585 (1967) https://doi.org/10.1063/1.1709704
  32. Z. W. Wilchinski, J. Appl. Phys., 30, 792 (1959)
  33. Z. W. Wilchinski, J. Appl. Phys., 31, 1969 (1960) https://doi.org/10.1063/1.1735481
  34. Z. W. Wilchinski, Advances in X-ray Analysis, 6, 231 (1962)
  35. I. Karacan, Ph.D Thesis, University of Leeds, 1986
  36. A. M. Hindeleh and D. J. Johnson, Polymer, 19, 27 (1978) https://doi.org/10.1016/0032-3861(78)90167-2
  37. R. S. Stein, J. Polym. Sci., 31, 327 (1958) https://doi.org/10.1002/pol.1958.1203112309
  38. M. Cakmak, J. Polym. Sci. Polym. Lett., 27, 119 (1989) https://doi.org/10.1002/pol.1989.140270402
  39. J. Shimizu, T. Kikutani, Y. Ookoshi, and A. Takaku, Sen-i Gakkaishi, 41(11), 59 (1985)
  40. T. Liu, Z. Mo, H. Zhang, H. Na, and Z. Wu, Eur. Polym. J. 33, 913 (1997) https://doi.org/10.1016/S0014-3057(96)00303-5
  41. N. T. Wakelyn, J. Polym. Sci., Polym. Lett. Ed., 25, 25 (1987) https://doi.org/10.1002/pol.1987.140250105
  42. R. J. Abraham and I. S. Haworth, Polymer, 32, 121 (1991) https://doi.org/10.1016/0032-3861(91)90571-Y
  43. C. W. Bunn, 'Chemical Crystallography', p.312, Oxford University Press, London, 1961
  44. J. Furukawa, S. Yamashita, T. Kotani, and M. J. Kawashima, J. Appl. Polym. Sci., 13, 2527 (1969) https://doi.org/10.1002/app.1969.070131202
  45. E. J. Roch, R. S. Stein, and E. L. Thomas, J. Polym. Sci., Polym. Phys. Ed., 18, 1145 (1980) https://doi.org/10.1002/pol.1980.180180518
  46. J. P. Hummel and P. J. Flory, Macromolecules, 13, 484 (1980) https://doi.org/10.1021/ma60075a004
  47. D. J. Blundell and A. B. Newton, Polymer, 32, 308 (1991) https://doi.org/10.1016/0032-3861(91)90019-F