자기 아파인 프랙탈 구조를 이용한 CPW 급전 크로스 안테나

A CPW-Fed Self-Affine Cross Shape Fractal Antenna

  • 김태환 (한국항공대학교 항공전자 및 정보통신공학부) ;
  • 이재욱 (한국항공대학교 항공전자 및 정보통신공학부) ;
  • 조춘식 (한국항공대학교 항공전자 및 정보통신공학부) ;
  • 이윤현 (한국항공대학교 항공전자 및 정보통신공학부)
  • Kim Tae-Hwan (School of Electronics, Telecommunication and Computer Eng., Hankuk Aviation University) ;
  • Lee Jae-Wook (School of Electronics, Telecommunication and Computer Eng., Hankuk Aviation University) ;
  • Cho Choon-Sik (School of Electronics, Telecommunication and Computer Eng., Hankuk Aviation University) ;
  • Lee Yun-Hyun (School of Electronics, Telecommunication and Computer Eng., Hankuk Aviation University)
  • 발행 : 2005.09.01

초록

본 논문에서는 처음으로, CPW(CoPlanar Waveguide) 급전을 이용한 자기 아파인(self-affine) 프랙탈 안테나를 제시한다. 제시된 새로운 구조는 비등방성 축척 대칭성으로 인해 자기 상사(self-similar) 구조를 이용한 프랙탈 안테나보다 더 작은 크기로 낮은 주파수 대역에서 공진을 일으키도록 설계할 수 있다. 반복 계수가 증가할수록 임피던스 정합 조건이 향상되고, 표면 전류가 흐를 수 있는 새로운 통로를 만들어 다중 대역 특성을 보이게 되며, 또한 첫 공진 주파수의 위치를 낮은 쪽으로 이동시킨다. 복사 패턴은 목표치인 단순 모노폴 안테나 특성과 유사하며 반복 계수가 3일 때의 이득은 940 MHz에서 측정치 2.27 dBi로 최대이다. FDTD 알고리즘에 기반을 두고 있는 CST Microwave Studio를 이용한 모의 실험 결과와 RT/Duroid 5880 기판을 이용하여 제작한 안테나의 측정 결과를 싣는다.

In this paper, a new CPW-fed cross shape fractal antenna having a self-affinity is presented. This novel configuration, which has anisotropic scaling symmetry, makes smaller profile characteristic compared to the fractal antenna using a self-similarity. Increase of the iteration coefficient, which leads to decrease of the fundamental resonant frequency, shows a good impedance matching condition and multi-band characteristics due to new surface current paths. The radiation patterns are similar to those of monopole antennas. In the K3 stage of iteration, the proposed antenna shows a measured maximum gain 2.27 dBi at 940 MHz. A commercially available software based on the FDTD algorithm has been used to obtain the predicted results. In addition, an RT/Duroid 5880 substrate has been employed for the experimental results.

키워드

참고문헌

  1. P. Dehkhoda, A. Tavakoli, 'Circularly polarized mi-crostrip fractal antennas', IEEE Antennas and Propagation Society Symposium, vol. 4, pp. 3453-3456, Jun. 2004
  2. O. Ban-Leong, 'A modified contour integral analysis for Sierpinski fractal carpet antennas with and without electromagnetic band gap ground plane', IEEE Transactions on Antennas and Propagation, vol. 52, pp. 1286-1293, May 2004 https://doi.org/10.1109/TAP.2004.827245
  3. G. F. Tsachtsiris, C. F. Soras, M. P. Karaboikis, and V. T. Makios, 'Analysis of a modified Sierpinski gasket monopole antenna printed on dual band wireless devices', IEEE Transactions on Antennas and Propagation, vol. 52, pp. 2571-2579, Oct. 2004 https://doi.org/10.1109/TAP.2004.834088
  4. C. Xuan, L. Yaxun, and S. Safavi-Naeini, 'Printed plane-filling fractal antennas for UHF band', IEEE Antennas and Propagation Society Symposium, vol. 4, pp. 3425-3428; Jun. 2004
  5. P. Dehkhoda, A. Tavakoli, 'A crown square microstrip fractal antenna', IEEE Antenna and Propagation Society Symposium, vol. 3, pp. 2396-2399, Jun. 2004
  6. B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, 1983
  7. D. Dasgupta, G. Hernandez, and F. Nino, 'An evolutionary algorithm for fractal coding of binary images', IEEE Transactions on Evolutionary Computation, vol. 4, pp. 172-181, Jul. 2000 https://doi.org/10.1109/4235.850657
  8. B. Wohlberg, G. D. Jager, 'A class of multiresolutioin stochastic models generating self-affine images', IEEE Transactions on Signal Processing, vol. 47, pp. 1739-1742, Jun. 1999 https://doi.org/10.1109/78.765153
  9. F. Lapique, P. Meakin, J. Feder, and T. Jossang, 'Self-affine fractal scaling in fracture surfaces generated in ethylene and propylene polymers and copolymers', Journal of Applied Polymer Science, vol. 86, pp. 973-983, Feb. 2002 https://doi.org/10.1002/app.11081
  10. E. Parker, A. N. A. EI Sheikh, 'Convoluted array elements and reduced size unit cells for frequency selective surface', lEE Proceedings-Microwaves, Antennas and Propagation, vol. 138, pp. 19-22, Feb. 1991
  11. J. M. Gonzalez-Arbescu, J. Romeu, 'On the influence of fractal dimension on radiation efficiency and quality factor of self-resonant prefractal wire monopoles', IEEE Antennas and Propagation Society Symposium, vol. 4, pp. 214-217, Jun. 2003
  12. L. T. Wang, X. C. Lin, and J. S. Sun, 'The broadband loop slot antenna with photonic bandgap structure', lEE International Conference on Antennas and Propagation, vol. 2, pp. 470-472, 2003
  13. H. O. Peitgen, H. Jurgens, and D. Saupe, Fractals for The Classroom, New York, Springer-Verlag, Inc., 1992
  14. A. Kimura, T. Watanabe, 'An extension of the generalized Hough transform to realize affine-invariant two-dimensional(2D) shape detection', IEEE International Conference on Pattern Recognition, vol. 1, pp. 65-69, Aug. 2002
  15. 'CST Microwave Studio, Release 5.0', Tech. Rep., 2004
  16. C. Borja, J. Romeu, 'On the behavior of Koch island fractal boundary microstrip patch antenna', IEEE Transactions on Antennas and Propagation, vol. 51, pp. 1281-1291, Jun. 2003 https://doi.org/10.1109/TAP.2003.811479