AAAFE 4FEE AT 2TEH S BIFE 24 7Y

ANAG AF%e A%

[e)
=
£ZEgo] BRAE 373 A
(A Software Complexity Measurement Technique for
Object-Oriented Reverse Engineering)

,
Uz o

(Jongwan Kim) (Chong-Sun Hwang)

2 % A 1099t AAAG Zee] B 2 BAE s AAMAY AZEY 0] Alxdd g o
&3 BF= A JEEc] A¢HALt ol#d 7|HEL WMC(Weighted Methods per Class),
LCOM(Lack of Cohesion in Methods)® #o] A2z AL 7|wtez itk 7| 7|HEY A= =
oA o S Adsithe Rojth B w=RMe 49 dedel A5, B3 off a2z A8
INAR Gldte A2 712X 71EE AQeH, olF I3 HEdeh w3 dFstagdy A=)
g Z=E % FHA BFE AL DS AFEINE Qe o)A NAEAE B 5839 2
= &% 71Y¥S ALt A<t71Me ECC(Enhanced Class Complexity)s C++870l4 434 iz 4
g4 A58 Bogt - '

F19E AZEJS HEYA FHA BEJL HEHA AT GF}

Abstract Over the last decade, numerous complexity measurement techniques for Object-Oriented
(00) software system have been proposed for managing the effects of OO codes. These techniques
may be based on source code analysis such as WMC (Weighted Methods per Class) and LCOM (Lack
of Cohesion in Methods). The techniques are limited to count the number of functions (C++). However,
we suggested a new weighted method that checks the number of parameters, the return value and its
data type. Then we addressed an effective complexity measurement technique based on the weight of
class interfaces to provide guidelines for measuring the class complexity of OO codes in reverse
engineering. The results of this research show that the proposed complexity measurement technique

847

ECC(Enhanced Class Complexity) is consistent and accurate in C++ environment.

Key words :

1. Introduction

Reverse engineering makes programs and con-
structs
refactoring,

associative deliverables for maintenance,
reuse and documentation of legacy
codes. Recent reverse engineering techniques can be
conducted by analyzing program structure. The
results are determined lexically, syntactically and
semantically [1]. Most of systems do not have

sufficient historical data and documents for
t gg2e - nedigta AR s
wany @disys.korea.ac. kr
o FAEY aeidigte FFERI
hwang@disys.korea.ac.kr
RS 0 20059 19 26d

: 20058 89 3Y

Software metrics, class complexity metrics, object-oriented reverse engineering

management and engineering. Therefore, reverse
engineering must start from analyzing source codes,
execution files or documents of a system without
its blueprint. In this paper, we concentrate on the
source codes of a system.

In reverse engineering, first, the analyst must
understand the system. Then, the analyst must
determine how to measure the complexity of
function-level and class-level granularity com-
prised of C++ member functions and class defi-
nitions respectively. The member functions of C++
are functions. We identify the functionality of a
function in the system by checking intersections
Functions and

between functions and classes.

848 ARAFHEEA £ZEH]
classes are distinguished by major and minor
functionalities. ’

To process reverse engineering, we check the
flow of codes without seeing detailed lbgics of
class methods. We look up the function calls in the
codes to capture the major part in the system. This
is a Gray Box Testing(GBT). In spite of GBT is
interface-based scheme such as BBT GBT uses
knowledge of implementation [2].

White Box Testing(WBT)
state and make use of implementation knowledge.
effort is
methodology in the analysis stage compared with
traditional
measurement. Software measurement is fundamental

can access private

More required with object-oriented

methodologies for class complexity
in the field of reverse engineering. Traditional
metrics, which are Halstead’s software science and
McCabe’s cyclomatic complexity, have been used in
the [3]. Object-Oriented

metrics have been proposed in the object-oriented

procedural paradigm
world but are not sufficient to characterize the
manner of OO systems.

Chidamber & Kemerer(C & K)
widely used currently [4]. C & K metrics have

metrics are

some deficiencies in reverse engineering. Although
some deficiencies have been evaluated using criteria
in [3], it is not sufficient to analyze for reverse
engineering.

We cannot find easly the paper that was applied
OO0 metrics to reverse engineering so far. In this
paper, we employed the GBT method from [2] and
modified the result of [3]. We suggested a new
complexity measurement method to enhance the
metrics for reverse engineering. We tested a new
method with C++ codes and and compared with C
& K WMC. The contributions of this research are
as follows. .

» Analyze OO systems using GBT

* Employ existing OO metrics for reverse
engineering.

« Propose ECC as a new method that makes
more weighted results than C & K WMC.
As a result, analysts can identify the major
and minor parts of a system.

The réma.inder of this paper is organized as
follows. In section 2, we discuss literature reviews

o

2 &8 A 324 A 9 =069

about system analysis and C & K metrics. In
section 3, we present the mapping process of minor
and major parts, - and then describe the new
proposed ECC method. Verification of the technique
in section 5

is described section 4. Lastly,

summarizes this research.

2. Literature Review

This section reviews code mapping to analyze
subsystems of a system and Chidamber & Kemerer
metrics adapted for reverse engineering. Because
reverse engineering analyzes source codes, delive-
rables or manuals, this paper does not consider
dynamic execution, which is called by dynamic
binding such as virtual functions in C++ but is
focused on each component of a system that
represents the static complexity of the system.
Static complexity measurement means that it does
not consider run-time execution and considers
{21

static complexity

complexity in the source code level only.

describes three categories of
models - regression analysis models, discriminant
analysis models and hybrid metric models. The
following is brief description of the models.

With given

metric values of a system, calculate the

* Regression analysis models:
number of potential faults in the software
system such as lines of code, debugging
time and fault repair effort based on the
metric values.

With given
classify the

* Discriminant analysis models:
metric values of a system,
system, which has a few changes or
potentially many changes by probability.

* Hybrid metric models: Generate a single
complexity metric value that can be used as
an indication of system complexity using
raw metric values of a system such as the
micro/macro complexity metric MMC and
the Maintainability Index (MID).

Among the three types of models, hybrid metric
models allocate resources in the software testing

[5,6).

metric models because they do not require data on

Therefore, it is convenient to use hybrid

historical defects. Variables, methods and objects
define complexity and it is useful in Chidamber &

HAAE 438E AT &

Kemerer metrics. Nevertheless, the proposed metrics
use different methods to get weighted values.

The features of Chidamber & Kemerer metrics are
various such as WMC(Weighted Methods per Class),
LCOM(Lack of Cohesion in Methods) [4,7,8].

WMC is the number of methods of a class for
LCOM is the

static complexity measurement.

number of method pairs.

LetP={1,,1,}1;NI; =0f W
Q={I.1;)I,NI; <0f @
LCOM =|P|-]Q), if|P| > |Q| = 0, otherwise 3)

Let {;} be a set of instance variables used by
method M. There are n sets {0}, -, {I.} of
instances [4]. LCOM is defined as (1), (2) and (3).

3. Enhanced Class Complexity Measure-
ment Technique

We must decide on the first base line how to
measure complexity of C++ function level in the
complexity measurement. Complexity of the class
level must be decided from C++ class definitions.

To identify subsystems from a system, we
perform the GBT on object-oriented codes, which
had developed in C++. In GBT or white box testing
each of encryption/decryption algorithms can be
forced to execute and we can get the code portions
of the subsystem for the major and minor func-
tionalities. An OO subsystem has some difficulties
in mapping between the major and minor parts.

In this section, we will show the result of
mapping between functions, classes and minor parts
by MAP3 and MAP4, but MAP]1 and MAPZ do not
appear here. Next, Fig. 1 shows relations between
minor parts, classes and functions in a subsystem.
Relative complexity and GBT method are employed
from [2] to analyze which classes are associated
each other in the system. The items analyzed
compose a new method for complexity measure—
ment.

Let MR be a set of major parts mr, and NR a

TEe] BAx =4 7)Y , 849

set of minor parts ar that is joined to the major
parts. Sub is a set of subsystems s in NR. In
subsystem s, we identify minor parts nr; € NR (i
is a number to identify each part).

Let MAP3 be a relation of F x NR, in which F
is a function in a class. Table 1 shows an example
of mapping functions to minor parts. v’ indicates
‘mapped’ and ‘-’ does ‘not mapped.’

Table 1 Mapping functions to minor parts (MAP3)

F x NR nrl nr2 nr3 nr4
F1 Vv - Vv _
F2 - v v v
I v - v
F4 v - v v

Let MAP4 be a relation of C x NR, in which C
is a class in a subsystem. Table 2 shows an

example of mapping classes to minor parts.

Table 2 Mapping classes to minor parts (MAP4)

C x NR nrl nr2 nr3 nrd
Cl v v - -
C2 v - v v
C3 - v - v
C4 v v v v

Therefore, minor part nrl is set {Cl, C2, C4, Fl,
F4}, nr2={C1, C3, C4, F2, F3}, nr3={C2, C4, F1, F2,
F4} and nr4={C2, C3, C4, F2, F3, F4}. As major
parts, we identified mri and mrZ through the
analysis step, which are {nrl, nr3, nr4} and {nr2,
nrd} respectively. Therefore, major part mrl is the
union of nri={F1, F4), nr3={F1, F2, F4} and
nr4={F2, F3, F4} in MAP3. In the same manner,
the class mapping sets are nrl={Cl, C2, C4},
nr3={C2, C4} and nr4={C2, C3, C4}, so mrl is {C1],
C2, C3, C4, Fl, F2, F3, F4}. Accordingly, major
part mr2 is set {Cl, C2, C3, C4, F2, F3, F4}. From
these sets, we can check the relationship between
minor parts, functions and classes in Fig 1. C4 is
nr3 and nr4,- but
because there is not enough space to put C4 we

common between nrl, nr2,

separate it in each part.

In this paper, we propose the ECC(Enhanced
Class Complexity) metrics to measure class com-
plexity but ECC; is not full ECC in this step. It

850 ARAGHEEA AT E

N
NI
5 FINB S

Fig. 1 The relationship between minor parts, func-

tions and classes

will be changed to ECC later. WMC defined by
Chidamber & Kemerer is comprised of the sum of
weighted methods per class without measurement
of internal complexity of functions and variables.
That is, WMC has a simple summation of func-
tions in a class. In addition, we suggest another
factor cv for ECC. cv is comprised of the number

of class variables.
ECC, = WMC+cv (4)

Class complexity according to ECC, is the sum
of the numbers of instance variables. That is, it is
the sum of all local methods and all variables in a
class. ECC; calculates the number of parameters in
a function and data types as a measurement of
function complexity. The return value and its data
type are also part of the base line. We consider
call-by-vailue and call-by-reference styles in a
function call. The data types of C++ are composed
primitives, pointers and user defined types. Since
both array and struct are user—defined types, a set
of primitives and pointers, the weighted value is
assigned as one or three for primitive or pointers
respectively using direct rating method (DRM) [9].

DRM as
important item and compares it with other items.

assigns a large value to the most
The weighted ratios are 1/4 or 3/4 according to the
importance of primitive or pointer type. In case of
array and struct type, the weighted value is
calculated by summing up the internal data types.
Since it is hard to understand of multiple
pointers, we assign a value increased by 3 to a

pointer of a pointer variable cumulatively. (e.g. in

2 & A 324 A9 50059

case of int** ptr, the weighted value is 6). We
surveyed to get weighted values by distributing
questionnaires to developers and reverse enginee—
ring researchers who has many experiences.

Thus, ECC1 is comprised as follows. fu is the
sum of function parameters and the return value. If
a function has five parameters and a return value
as primitive, it will have fo = 6. If all of them are
pointers, fo = 18.

ECCI =WMC+CV+fv 5)

Based on Table 1 and 2, let us assume that class
C1 is mapped into function Fl={nrl, nr3}, class C2
into function F2={nr2, nr3, nr4} and Cl={nrl, nr2}.
That is, F1€Cl. In the next expression, ¢ is the
number of the union set between class nr and

function nr.
ECC=WMC+cv+fv+cf ®)

The numbers of classes and functions express
frequencies of use in a subsystem. Thus, analyzers
can select and analyze preliminarily the minor part
for reverse engineering.

4. Verifications of the Technique

A system was analyzed by the ECC method
described

selected preliminarily.

above and an analysis target was
The example codes show
only one class. First, we found three minor parts
and they are as in Table 3 below.

The result of mapping classes to minor parts is
in Table 4 and Table 5 show the complexity using

ECC.

Table 3 Mapping functions to minor parts

F xN nrl | nr2 | nr3 |Function |Class
MountDirectory - - N Fl
UnmountDirectory - - Vv F2
ShowAddCFSUserDialog | v/ - - F3 a1
ShowAddCFSGroupDialog | +/ - - F4 :
Refresh il A I F5
Clear - -l vV F6
Socket Vv - - F1
Bind - - v F2 c2

HARG GFtS 4% 2zEH] BFz F4 7)Y 851

Table 4 Mapping classes to minor parts

C x N nrl nr2 nr3 Class
CCrbCFSDirListCtrl v v v C1
CasyncSocket v - v C2

Table 5 Examination of a subsystem

Class C & K WMC ECC
CCrbCFSDirListCtrl 6 30
CasyncSocket 2 22
CsyncObj 1 9
CCriticalSection 1 10
CsingleLock 2 16

According to formulas presented above, the

results of set mapping are Fl={nrl, nr3}, F2={nr3},
F3={nrl}, F4={nrl}, F5={nr2, nr3), F6={nr2, nr3}
and Cl={nrl, nr2, nr3}. We can calculate ECC
straightforward. cf is 8 because (functionUclass)
=1+1+1+1+2+2,

ECC=WMC+cv+{v+¢f=6+12+4+8=30

The virtual functions of C++ are not included in
static complexity measurement because they are
called dynamically in run-time. The parameters in
a function have weighted values in this measure-
ment. For a pointer, the weight is increased by 3.
If the primitive data type factor is not a pointer, 1
is added.

The return value is processed in the same way.
Then the number of union with functions, classes
and minor parts is added to the ECC. The ‘CCrb-
CFSDirListCtrl’ class is computed by the following
source code:

01: class CCrbCFSDirListCtrl : public CUIListCtrl

02: {

03: private:

04: CCrbAPClient *m_pCrbAPClient;
05! CCrbUserResource *m_pUserResource;
06: CCrbGroupResource *m_pGroupResource;
07: CCrbCFSResource *m_pCFSResource;
08: protected:

09: virtual void OnCreateHandler();

10: virtual void OnDestroyHandler();

11: virtual void OnltemChangedHandler(NM_LISTVIEW

* pNMListView);

12: public:

13: void MountDirectory(int nltem);

14: void UnmountDirectory(int nltem);

15 void ShowAddCFSUserDialog(int nltem);

16: void ShowAddCFSGroupDialog(int nitem);
17: void Refresh();

18: void Clear();

190 %

5. Implications and Conclusions

In this paper, we measured the class complexity
using a new weighted method that checks the
number of parameters, the return value and its data
type in order to avoid the simplicity of old methods
that check only the number of functions. Moreover,
to establish guidelines for class complexity mea-
surement for C++ source codes (Object-Oriented) in
reverse engineering, we suggested a measurement
technique. This paper showed practical results and
adjusted a-new method for complexity measurement
by putting weighted values on class interface.

We tested source codes to prove some strong
points over C & K method using improved mea-
surement method ECC. In addition, the complexity
measurement was used as a method to verify the
complexity and system dependency of analysis
target sources in reverse engineering. We can
select more important functions or classes using
ECC. In reverse engineering, it takes several hours
to check the detailed contents of target sources
because the analysts did not develop the sources.
Therefore, we used GBT method to check functions
and classes in the system.

During GBT, we could not see the detailed logics
and check the cyclometic complexity of functions.
In this case, WMC will be equivalent to the
number of local methods. Therefore, if we use the
ECC measurement method, the complexity of cla-
sses can be checked more thoroughly and used in
decision making for reverse engineering.

Further study is necessary to calculate compa-
rative complexity between each class and function.
We will get more accurate and reliable results from
system analysis in comparative complexity measure—
ment.

852 ARAFIN=EA 2ZEH] L 38 A 32 A A 9 2069

References

[1] Jean-Marc DeBaud, Bijith Moopen, Spencer Ruga-
ber, Domain Analysis and Reverse Engineering,
pp. 326-335, IEEE, 1994

[2] Jiangiang Zhuo, Paul Oman, Ramkumar Pichai,
Sujay Sahni, Using Relative Complexity to Allo-
cate Resources in Gray-Box Testing of Object-
Oriented Code, pp. 74-81, IEEE METRICS, 1997.

[3] N. V. Balasubramanian, Object-oriented Metrics,
pp. 30-34, in Proc. Int. Asia-Pacific Conf. Soft-
ware Engineering, 1996.

[4} Chidamber S. R., Kemerer C. F., Towards a Met-
rics Suit for Object Oriented Design, pp. 197-211,
OOPSLA, 1991.

{5] Warren Harrison, Using Software Metrics to
Allocate Testing Resources, pp. 93-105, Journal of
Management Information Systems, Vol. 4, No. 4,
1988. :

[6] John C. Munson and Taghi M. Khoshgoftaar,
Applications of Relative Complexity Metric for
Software Project Management, pp. 283-291, J.
Syst. Software, Vol. 12, No. 3, 1990.

[7] Chidamber S. R., Kemerer C. F., A Metric Suit
for Object Oriented Design, pp. 476-493, IEEE

Transactions on Software Engineering, 20(6),
1994.
[8] Tom Mens, Michele Lanza, A graph-based

metamode]l for object-oriented software metrics,
Electronic Notes in Theoretical Computer Science
72 No.2, 2002.

[9] D. von Winterfeldt and W. Edwards. Decision
Analysis and Behavioral Research, Cambridge
University Press, Cambridge, 1986.

Jongwan Kim

Jongwan Kim is a Ph.D. candidate at
the Department of Computer Science
and Engineering, Korea University.
He works for Distributed Systems
/. Laboratory. He has more than 10
. years field experiences as a developer
and technician for COM, COM+. He has developed
various applications and associated with numerous
projects including Medical Information System using
PDA, Alll Mighty IT Co. Ltd, Configuration
Management System Dev. For Software Reuse Artifact
Management Based on Reverse Engineering, Korea
Science and Engineering Foundation (KOSEF). His
research interests include Mobile Data Management,
Location Based Services, Object- Oriented technologies,
Component-Based Development.

5y

Chong-Sun Hwang

| Chong-Sun Hwang received the M.S.
| degree in Mathematics from Korea
! University, Korea in 1970, and Ph. D.
degree in Statics and Computer
| Science from University of Georgia I
1978. From 1978 to 1980, he was an
Associate Professor at South Carolina Lander State
University. He .is currently a Full Professor in the
Department of Computer Science and Engineering at
Korea University, Seoul, Korea. Since 1995, he has
been a dean in the Graduate School of Computer
Science and Technology at Korea University. His
research interests include distributed systems, distri-
buted algorithms, and mobile computing systems.

