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Enhancing TCP Performance to Persistent Packet
Reordering

Ka-Cheong Leung and Changming Ma

Abstract: In this paper, we propose a simple algorithm to adaptively
adjust the value of dupthresh, the duplicate acknowledgement
threshold that triggers the transmission control protocol (TCP) fast
retransmission algorithm, to improve the TCP performance in a
network environment with persistent packet reordering. Our al-
gorithm uses an exponentially weighted moving average (EWMA)
and the mean deviation of the lengths of the reordering events re-
ported by a TCP receiver with the duplicate selective acknowledge-
ment (DSACK) extension to estimate the value of dupthresh. We
also apply an adaptive upper bound on dupthresh to avoid the re-
transmission timeout events. In addition, our algorithm includes a
mechanism to exponentially reduce dupthresh when the retrans-
mission timer expires. With these mechanisms, our algorithm is
capable of converging to and staying at a near-optimal interval of
dupthresh. The simulation results show that our algorithm im-
proves the protocol performance significantly with minimal over-
heads, achieving a greater throughput and fewer false fast retrans-
missions.

Index Terms: Computer communications, congestion control, dis-
persity routing, high-speed networks, multipath routing, transmis-
sion control protocol (TCP).

I. INTRODUCTION

Recent studies have suggested that packet reordering is not
a pathological behaviour in the Internet [1]. Yet, the impact of
packet reordering on protocol performance is significant, espe-
cially for transmission control protocol (TCP), the most com-
monly used transport protocol in the Internet.

Packet reordering can be caused by misconfigured or mal-
functioning network components that leads to frequent route
fluttering or router pauses. The inherent parallelism in modern
packet switches also brings about packet reordering during nor-
mal operation. Besides, multipath routing [2]-[4] is an effec-
tive traffic engineering technique to improve network through-
put and reduce network load fluctuation. It has shown [5], [6]
that not only does multipath routing balance the load signifi-
cantly better than single-path routing over wired networks, but
also it provides better performance in congestion and capacity
over mobile ad hoc networks. In packet-switched networks such
as the Internet, the smallest data switching unit is a packet. A
packet flow can be split over multiple paths between a source
and a destination in a multipath network. When packets travel
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on paths with different round-trip times (RTTs), they may arrive
out-of-order at the destination.

The standard TCP source agent does not receive any explicit
information about the current congestion status from the un-
derlying protocols. It probes the available network bandwidth
by increasing the congestion window size until a packet (or
segment) loss occurs, at when it shrinks the window size. The
TCP fast retransmission algorithm, running in parallel with the
timeout mechanism, exploits the fact that the TCP receiver al-
ways acknowledges the last segment successfully received in
the correct order. The reception of duplicate acknowledgements
(ACK3s) can be an indication to the sender for the occurrences
of either packet reordering or packet loss. The ability to dis-
ambiguate these two cases can improve the protocol perfor-
mance considerably. If the network paths reorder packets persis-
tently and packet reorderings are interpreted as packet losses, the
fast retransmission algorithm is activated frequently to resend
packets which have not been lost, wasting network bandwidth
and keeping window size unnecessarily small. Besides, persis-
tent spurious retransmission can exacerbate network congestion,
lead to classical congestion collapse, and reduce the TCP con-
nection throughput [7].

A. Our Contributions

Although it is hard, both economically and theoretically, to
eliminate packet reordering, recent research has been conducted
to improve the reordering robustness of TCP. In this paper, we
survey some of these proposals and devise a simple algorithm
to adaptively adjust the value of dupthresh to improve the TCP
performance in a network environment with persistent reorder-
ing.

Our algorithm uses an exponentially weighted moving aver-
age (EWMA) and the mean deviation of the lengths of the re-
ordering events reported by a TCP receiver with the duplicate
selective acknowledgement (DSACK) extension to estimate the
value of dupthresh. We also apply an adaptive upper bound on
dupthresh to prevent dupthresh too high to trigger a retrans-
mission timeout. In addition, our algorithm includes a mecha-
nism to exponentially reduce dupthresh when the retransmis-
sion timer expires. Our algorithm is engineered to avoid a cer-
tain portion of the false fast retransmissions so as to strike a
balance between the avoidance of spurious retransmissions due
to packet reordering and timely retransmissions of lost packets.

B. Organization of the Paper

This paper is organized as follows. Section II gives a sur-
vey of the related work. Section III presents our algorithm
to adaptively adjust the value of dupthresh, the duplicate ac-
knowledgement threshold that triggers the TCP fast retransmis-
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sion algorithm, to improve the TCP performance in a network
environment with persistent packet reordering. Section IV ex-
amines our simulation results and discusses the effectiveness of
our proposed algorithm for improving the reordering robustness
of TCP. Section V concludes and discusses some possible ex-
tensions to our work.

II. RELATED WORK

The DSACK extension [8] to the TCP SACK option [9] has
been proposed to make TCP more robust to packet reorder-
ing. The information of spurious retransmission inferred from
DSACK is helpful in adjusting the sender behaviour to improve
the TCP performance. Originally, the TCP fast retransmission
algorithm is triggered when three duplicate acknowledgements
are received [10], [11]. Some approaches that adaptively mod-
ify dupthresh have been developed to make TCP more robust
in the presence of various levels of packet reordering.

Several techniques have been proposed in [12] to adjust
dupthresh by
1. constantly increasing dupthresh,;

2. increasing dupthresh based on the average length of a re-
ordering event and the current value of dupthresh;

3. using a duplicate ACK threshold and a delay timer; and

4. using a running average of the reordering length as the esti-
mator of dupthresh.

Hereafter, we will refer to the above algorithms as INC, AVG,

DEL, and EWMA, respectively.

Their simulation results showed that, when compared with
the original fixed dupthresh method, the proposed techniques
improved throughpiit with different extents. The algorithms also
reduced the numbers of unnecessary retransmissions. However,
their algorithms have several shortcomings. dupthresh is not
very sensitive to the dynamic behaviour of the reordering events.
It slowly converges to a satisfying value. The upper bound
of dupthresh is set to 0.9 cwnd, where cwnd is the size of
the congestion window (in segments). A retransmission timeout
may occur when multiple packets are reordered or lost within
the same congestion window. When cwnd is small, the false
fast retransmissions can ’ai.lso happen. When a retransmission
timeout occurs, dupthresh is reset to three, losing all historical
information that should be useful in adjusting dupthresh after
the reset.

RR-TCP [13] extended the sender to detect and recover from
the false fast retransmissions using the DSACK extension, and
avoided future false fast retransmissions proactively by adap-
tively changing dupthresh. Their simulation ‘results showed
that RR-TCP could significantly improve the TCP performance
over reordering networks. It employed a reordeting histogram
to store the reordering information. This information can be
used to adjust dupthresh indirectly via the false fast retrans-
mit avoidance (FA) ratio, the percentile value in the cumulative
reordering length distribution.

A timer-based approach to avoid false fast retransmission has
been proposed in [14]. It employed a timer, of which the thresh-
old is a function of RTT, to trigger fast retransmission. In fact,
the DEL algorithm [12] could be viewed as an extension to
this approach. TCP-PR [15] also utilized timers. It did not

rely on duplicate ACKs. However, it was computationally ex-
pensive to estimate the maximum possible round-trip time (as
the value of the retransmission timeout) since a series of expo-
nentiation computations had to be performed on every ACK ar-
rival. The Eifel algorithm [16] enhanced the TCP error recovery
mechanism. It detected false timeouts and false fast retransmis-
sions and revoked their penalties. However, the algorithm did
not proactively avoid the false fast retransmissions. Yet, we fo-
cus on how to avoid the false fast retransmissions by adjusting
dupthresh with minimal overheads in this paper.

An integrated sender-side and receiver-side solution to im-
prove the TCP performance over multiple paths has been pro-
posed in [17]. On the sender side, dupthresh was set to increase
logarithmically on the number of paths used. On the receiver
side, delayed ACKs were generated for out-of-order packet ar-
rivals. However, the level of packet reordering depends on the
differences in path delays and how the packets belonging to a
single flow are distributed to these paths, but there exists no di-
rect correlation between the extent of packet reordering and the
number of paths used [18]. This approach also requires modifi-
cations to both TCP senders and receivers to achieve the desired
performance improvement.

RR-TCP [13] requires excessive computational and storage
overheads, whereas the techniques proposed in {12] may not
adapt well to the real network conditions. Particularly, their
methods are not sensitive enough to accommodate to changes
in the network environment promptly. In this paper, we propose
an algorithm which possesses the similar performance speedup
as in RR-TCP with much less overheads to improve the TCP
robustness in case of significant packet reordering.

III. OUR ALGORITHM

A. Detecting False Fast Retransmit

As in [12] and [13], we use the DSACK extension in TCP to
detect the occurrences of the false fast retransmissions. A TCP
sender is able to learn whether a retransmission is necessary,
using the DSACK option and the historical segment retransmis-
sion information stored in the sender’s scoreboard. If the sender
later receives both the ACKs of the original packet and the spu-
riously retransmitted packet, it can detect a false fast retransmis-
sion and potentially recover from its adverse impact on the TCP
performance by undoing the reduction of the congestion win-
dow size. The DSACK specification itself does not stipulate the
sender’s actions upon receiving the DSACK information. How-
ever, the information is helpful for improving protocol perfor-
mance by accomplishing the following two objectives.

1. Recovering from the unnecessary window size backoffs dur-
ing fast retransmit.

2. Avoiding any future false fast retransmissions by adjusting
dupthresh.

To satisfy the first objective, the unnecessary window reduc-
tion is rolled back to the most recent value prior to the false fast
retransmission. Similar to the approach used in [12], the sender
uses slow start to increase the size of the congestion window to
its prior value so as to avoid injecting traffic bursts to the net-
work. The second objective is achieved by using the following
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techniques to adjust the value of dupthresh.

B. Adjusting the Value of dupthresh

The key idea of our algorithm is to evaluate an exponen-
tially weighted moving average (EWMA), avg, of the lengths
of the detected reordering events. To render dupthresh con-
sistent with the dispersion of the reordering lengths and make
it more conservative (but not overly conservative) in discrimi-
nating packet reordering and packet loss, we let dupthresh be
the sum of avg and a fraction of mdev, where mdev is the
mean deviation of the reordering length samples. In our im-
plementation, the mean deviation is used instead of the stan-
dard deviation of the reordering length for computational sim-
plicity. The use of EWMA on the reordering length has been
proposed in [12] as an alternative to adjust dupthresh. Our
method, however, differs from theirs as it adds a fraction of
mdev into dupthresh. Theoretically, by including this addi-
tional term, it is possible for dupthresh to avoid a certain
portion of the false fast retransmissions due to packet reorder-
ing. To a certain extent, it shares the same design philosophy
as the FA ratio proposed in [13], but it incurs less overheads.
As inferred from our simulation results, this seemingly mi-
nor modification (together with some other enhancements de-
scribed in the following subsections) can improve the proto-
col performance substantially. Our procedure is described in
(1)—(4).

Let r be the (k + 1)-th sample of the reordering length, i.e.,
the length of the (k+1)-th reordering event detected by the TCP
sender, and o be a pre-defined smoothing constant (typically,
a € [0.3,0.4] is used in our experiments). The EWMA value,
avg, is calculated as follows.

avglk+1)=a-r+ (1 —a) - avg(k) (D

where avg(k) is the original EWMA value and avg(k + 1) is
the new value updated with 7.

The mean deviation of the reordering length samples, with a
small weight to the most recent instance (our simulation experi-
ments show that 8 € [0.2,0.4] achieves the best result), is used
to estimate the valiie of mdev.

aerr(k+ 1) = |r — avg(k)|, )
mdev(k + 1) = - aerr(k+1) + (1 — 8) - mdev(k) (3)

where aerr and mdev are the absolute error and the mean devi-
ation of the reordering length, respectively.

When a new reordering event is detected, the new values of
avg and mdev are recomputed using (1), (2), and (3). Then, the
value of dupthresh is computed as

dupthresh = |avg + A - mdev | 4)
where A is a pre-set parameter (typically, A € [0.2,0.4]).

C. Avoiding Timeouts with Upper Bound

Merely increasing dupthresh can possibly trigger a retrans-
mission timeout when a very large dupthresh prevents the
sender from timely retransmitting a lost packet. To overcome
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this problem, we apply an upper bound dupthresh,,; upon our
dupthresh to reduce the possibility of a timeout event.

Let RTO be the value of the retransmission timeout, RTT be
the estimated value of the round-trip time, and T'(m) be the total
time elapsed between when the sender transmits a packet (which
is lost in the network) and when the sender receives the ACK of
the retransmitted packet (which is sent after m duplicate ACKs
have been received). If we can guarantee that T'(m) is less than
RTO, we have a good chance of avoiding a timeout event. By
applying the TCP self-clocking effect [19],

T(m)=2-RTT +m T 5

where T}, is the average inter-packet time.

The average inter-packet time can be evaluated from the con-
gestion window size cwnd and RTT. If the transmission paths
used by a TCP connection are viewed as a queueing system,
again by self-clocking, the arrival rate is 7~—, the residence time
(the time spent by a packet and its ACK in the system) is RTT,
and the number of items in the system is cwnd. According to
Little’s theorem [20],

RIT

int

©)

cwnd =

From (5) and (6),
RTT
cwnd’

T(m)=2-RTT+m 7

To prevent the TCP sender from timeout, T'(m) should be
less than RTO. To introduce a safety margin to counteract the
estimation errors of RTT and T}, we let T'(m) be a portion of
RTO. Assume < is a constant which is less than 1,

T(m) <+-RTO. ‘ (8)
By substituting (7) into (8),

RTT

2-RTT+m-—— <+-RTO. )]
cwnd

In order to avoid a retransmission timeout, the value of m is

given by
RTO
< ——— _9). ,
m < (*y RTT 2) cwnd (10)
An upper bound of dupthresh is thus given by
RTO
th ubf = L —92]. .
dupthreshyy [(7 RTT > cwndJ D

In this way, we can theoretically prevent dupthresh from be-
coming too high to trigger a retransmission timeout. In practice,
however, the accuracy of dupthresh,,; depends upon the esti-
mators of RTT and RTO. The occurrences of timeout events can
be reduced by dupthresh.y, but it cannot be avoided entirely.
When a timeout event occurs, we use the value of dupthresh
at that time to serve as the second upper bound. This value is
called dupthresh;m,, and acts as an auxiliary constraint to the
upper bound of dupthresh

dupthreshyy = min(dupthreshqyy s, dupthreshim,). (12)

That is, the ultimate upper bound of dupthresh is the min-
imum of the value given in (11) and the most recent value of
dupthresh which leads to a timeout event.
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r Algorithm AVG-DEV
Begin
after a reordering event of length N is detected
update avg using (1);
update mdev using (3);
update dupthresh using (4);
recompute dupthresh upper bound using (11) and (12);
if ( dupthresh >= dupthresh upper bound
dupthresh = dupthresh upper bound;
after a retransmit timeout event
save the current value of dupthresh;
recompute avg using (13);
recompute mdev using (14);
update dupthresh using (4), (11), and (12);
if ( dupthresh >= dupthresh upper bound
dupthresh = dupthresh upper bound;
after receiving k-th duplicate ACK
if ( k > dupthresh

retransmit the segment following
the one that is ACKed in duplicate;

End

Fig. 1. Pseudo-code of the combined\algorithm.

D. Decreasing dupthresh

In the previous subsections, we have discussed how to adjust
dupthresh when detecting a false fast retransmission. We still
need a strategy to decrease dupthresh when RTO expires. The
algorithm in [12] simply resets dupthresh to 3 upon a timeout.
The algorithm proposed in [13] reduces dupthresh based on the
ratio of the cost of a timeout to that of a false fast retransmission.
The first strategy is too crude to be used in a real network since
it loses information about the current value of dupthresh after
dupthresh is reset. We also believe that the second approach
is too complex and involves too much overheads as a histogram
storing the reordering length distribution has to be maintained
and manipulated. Based on our simulation results and those
given in [12] and [13], we decide to multiply avg and mdev
with two positive constants Cy and Cs, respectively. These two
constants are both less than unity. The procedure leads to mul-
tiplicative decreases of avg and mdev in order to achieve a fast
convergence to the targeted dupthresh. It can be viewed as
adding some dumping to our dupthresh-adjusting mechanism.
As shown in [21], a linear system can be stabilized by adding ex-
ponential dumping components. When a retransmission timeout
occurs,

13)
(14)

avg = C1 - avg,

mdev = Cy - mdew.
dupthresh is then computed using (4).

E. The Combined Algorithm
Our combined algorithm, referred to hereafter as AVG-DEYV,
is shown in Fig. 1.
IV. PERFORMANCE EVALUATION

In this section, we present our simulation results, compare our
proposed algorithm with those described in [12] and [13], and

10 Mbps
P R1

1 ms

5 Mbps
Configurable delay

10 Mbps

1 ms

R2 D

Fig. 2. Single-path network topology.

discuss the fairness issue of our algorithm. Section IV-A consid-
ers and compares the performance of the algorithms under study
over a single-path network topology. Section IV-B investigates
the performance of these algorithms over a multipath network
topology. Section IV-C compares the space and computational
overheads of our method to that of RR-TCP. A discussion of
fairness issue of our algorithm is given in Section IV-D.

A. Single-Path Network

Our simulations are carried out in ns-2. The first topology, a
single-path network topology, is shown in Fig. 2. It involves two
end-systems (S and D) and two routers (F1 and R2). A single
TCP flow from S to D lasting for 1000 seconds is simulated.
The sender S uses the sackl TCP and the receiver D is capable
of generating the DSACK information.

The path between R1 and R2 models the underlying network
path connecting R1 and R2. The path usually consists of multi-
ple hops. A hop-count average of 16.2 was reported in [22] for a
path in the Internet. The central limit theorem [23] suggests that
the end-to-end delay over a multi-hop path, which is the sum of a
large number of independent hop-delays, is approximately nor-
mally distributed. To simulate packet reordering (such as those
caused by route fluttering), we periodically change the R1-R2
path delay according to a normal distribution. The time interval
between two successive changes in delay, denoted as the de-
lay update interval, imitates various extents of the reordering
events. In our simulation, we update the delay every 50 ms or
100 ms. The former will introduce reordering events more fre-
quently. The mean and standard deviation of the delay distribu-
tion simulate the reordering length distribution itself. The mean
and standard deviation of the delay are 200f ms and @39’—" ms,
respectively, where f is the “packet delay factor”” The factor
f ranges from 1.0 to 3.8 in our simulations. A larger packet
delay factor results in reordering events with longer reordering
lengths. We are going to demonstrate the impact of the delay
distribution to packet reordering when we show the simulation
results with different delay update intervals and delay distribu-
tions.

The setting of the simulation parameters are summarized in
Table 1. Before collecting our experimental results, we have
conducted a small subset of experiments to determine how the
parameters (o, 53, A, v, Cy, and Cs) are chosen. For each ex-
periment, we have examined a large number of combinations of
these parameters. The selected parameter configuration repre-
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Table 1. Setting of the simulation parameters.

Parameter Value
Mean of R1-R2 path delay 200f ms, f € [1,4)
Standard deviation of path delay % ms, f € [1,4)
Interval between two successive delay changes 50 ms, 100 ms
Maximum cwnd 100 packets
Minimum RTO 1s
ain (1) 0.3
Bin (3) 0.3
Xin (4) 03
v in (8) 0.7
C1 in (13) 0.5
Cy in (14) 0.25
4 l ' I i ' 1.7e+06 T T T T T
1.3e+06 E DSA'(’\:IE":W 1 v DSACK ——
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Packet delay factor

Fig. 3. Throughput against packet delay factor. Path delay is changed
every 50 ms. No packet loss.

sents the best performance of our proposed algorithm through-
out these preliminary experiments. Indeed, the performance of
our algorithm is rather insensitive to «, 3, and A so long as
they are taken within their operating regions as specified in Sec-
tion III-B. We plan to devise an adaptive algorithm to dynami-
cally estimate the values of these parameters as part of our future
study.

In all of the following figures, DSACK is the method using
the DSACK TCP with a fixed dupthresh of 3. INC, AVG, DEL,
and EWMA are those techniques proposed in [12]. AVG-DEV
is our proposed algorithm. FA is an algorithm of RR-TCP [13],
DSACK-FA-MEAN with an enhanced RTT sampling (ES), with
a fixed FA ratio. The parameters are configured the same way as
described in [13].

The simulation results, in terms of the average connection
throughput over 15 runs, are shown in Figs. 3-5. We change
the path delay every 50 ms in Figs. 3 and 5, while the path delay
is altered every 100 ms in Fig. 4. This means that the reorder-
ing events occur more frequently in Figs. 3 and 5 than those in
Fig. 4. In addition, we introduce packet loss with the loss rate
of 0.2% in Fig. 5. The packet delay factor f is within the inter-
val of [1, 4) for all results shown in these three figures. A larger
value of f yields a larger mean and standard deviation of the
path delay. This results in more dispersed reordering lengths,

100000
1 15 2 25 3 35 4

Packet delay factor

Fig. 4. Throughput against packet delay factor. Path delay is changed
every 100 ms. No packet loss.
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>
e
e
'—

300000

100000
1 15 2 25 3 35 4

Packet delay factor

Fig. 5. Throughput against packet delay factor. Path delay is changed
every 50 ms. Packet loss rate is 0.2%.

that corresponds to the network scenarios with more severe re-
ordering events.

As exhibited in Fig. 3, our algorithm improves the connection
throughput by around 40%—-80% compared to DEL, INC, and
AVG. When it is compared to EWMA, it achieves the through-
put improvement by 120%—-150%. This shows that our algo-
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Fig. 6. Unnecessary retransmission rate against packet delay factor.
Path delay is changed every 50 ms. No packet loss.

rithm adapts very well when the reordering events occur more
frequently. The introduction of the upper bound to dupthresh
effectively prevents it from triggering timeout events. When
compared to FA, AVG-DEV possesses a very similar perfor-
mance improvement.

When the reordering events happen less frequently, our algo-
rithm achieves less throughput improvement (about 15%-35%
compared to DEL, 7%-30% compared to AVG, and 75%-100%
compared to EWMA). This is reasonable, since our algorithm
adaptively adjusts dupthresh when a reordering event occurs.
A fewer occurrences of ordering events means smaller perfor-
mance differences among all the methods examined in our ex-
periments. This is demonstrated in Fig. 4. The simulation re-
sults in [12] did not evaluate the impact of packet loss to their
algorithms. We introduce random packet loss with a loss rate of
0.2% in our experiments.

As shown in Fig. 5, the performance improvement con-
tributed by our algorithm is greater than those proposed in [12]
(improved by 50%-70% compared to DEL and 125%-155%
compared to EWMA). This indicates that our algorithm is ro-
bust in a lossy network environment. Again, in Figs. 4 and 5,
AVG-DEYV achieves the performance improvement that is very
close to that of FA.

Figs. 6-8 show the comparisons of various algorithms based
on the unnecessary retransmission rate, which is defined as the
ratio of the number of unnecessary fast retransmissions to the
total number of packets transmitted. When the path delay is
changed every 50 ms, as exhibited in Fig. 6, our algorithm effec-
tively reduces the unnecessary retransmission rate to 15%—40%
of that of DEL and 6%—15% of that of EWMA.

Fig. 7 shows the performance of various algorithms running
in an environment with fewer reordering events. Our algorithm
still outperforms others by reducing the unnecessary retransmis-
sion rate, though its performance superiority diminishes. By in-
troducing the packet loss with a loss rate of 0.2%, the connection
throughput is dropped significantly, but the unnecessary retrans-
mission rate is more or less the same. Our algorithm achieves
a drastic reduction in the false fast retransmissions as shown in
Fig. 8. This is attributed to the ability of our proposed algorithm

T T T T
DSACK —l—
INC-—+-
AVG X
EWMA =3~
AVG-DEV --w-—
FA=~<7-

Unnecessary retransmission rate (%)

Packet delay factor

Fig. 7. Unnecessary retransmission rate against packet delay factor.
Path delay is changed every 100 ms. No packet loss.
8 T T T T

< DSACK —l—
< 7L INC-—F-
= AVG 3K
S EWMA -3~
4 5t AVG-DEV --w-~ ]
£ FA=~7
5 ]
g 5 ]
-
. 1
(7]
o
g1 1
< —
S W Py Ve oy B Y YT

1 15 2 25 3 35 4

Packet delay factor

Fig. 8. Unnecessary retransmission rate against packet delay factor.
Path delay is changed every 50 ms. Packet loss rate is 0.2%.

to correctly identify a larger portion of the reordering events.
This means that most of the reordering events will not trigger
the false fast retransmissions.

B. Multipath Network

Multipath routing has recently been found to be an effec-
tive traffic engineering technique to improve network through-
put and reduce network load fluctuation [2]-[4]. However, pack-
ets belonging on the same TCP flow and travelling on different
paths may arrive out-of-order at the destination. This results
in triggering fast retransmissions frequently and unnecessarily
because of the inability for TCP to distinguish between packet
reordering and packet loss. Thus, some network bandwidth is
wasted while the connection throughput is kept to be small. To
make packet-based multipath routing to become a practical traf-
fic engineering technique for core networks, the problem of per-
formance degradation due to out-of-order packet arrivals has to
be alleviated. In this subsection, we demonstrate the ability of
our proposed algorithm to resolve the aforementioned problem
by comparing its performance to other existing approaches in a
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Fig. 9. Multipath network topology.
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Fig. 10. Throughput against proportion of traffic through path R1-R3-R4.
No packet loss over link S-R1.

multipath network environment.

Instead of using the default round-robin forwarding algorithm
in ns-2, we have implemented the weighted round-robin traf-
fic splitting algorithm. It allows any feasible load distributions
along different paths. A multipath network topology, as shown
in Fig. 9, consists of two end-systems (S and D) and four routers
(R1-R4). A TCP flow from S to D lasting for 1000 seconds is
simulated.

In our simulation results reported here, the configurable band-
width and delay of R1-R3 link are 1 Mbps and 250 ms, respec-
tively. The TCP traffic proportion between two paths (R1-R2-
R4 and R1-R3-FR4) is adjustable. We change the proportion of
the flow travelling along R1-R2-R4 from 0% to 100%. Mean-
while, the R1-R3-R4 proportion decreases from 100% to 0%.

When the proportion of the flow travelling along R1-R2-R4
is 0% or 100%, the TCP flow travels on a single path. All pack-
ets are thus arrived at the destination in the same order as they
are sent. Since the techniques under study merely differ in how
packet reordering is handled, they therefore have the same con-
nection throughput.

By changing the proportion of the flow to be routed on these
two paths, various levels of packet reordering can be simulated.
The methods perform differently in these reordering scenarios
as shown in Figs. 10 and 11. Again, the results reported here
are the averages over 15 runs. The throughput performance of
an “ideal” algorithm to deal with out-of-order packet arrivals
would show a straight line joining the two points corresponding
to the connection throughput when all packets travel on either

Table 2. Comparisons of the unnecessary retransmission rates.

Method | No packet loss | With 0.3% packet loss
DSACK 3.078 3.423
INC 1.146 1.569
AVG 0.935 1.535
DEL 0.993 1.327
EWMA 2.212 2.382
AVE-DEV 0.348 0.427
FA 0.257 0.392
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Fig. 11. Throughput against proportion of traffic through path R1-R3-R4.
Packet loss rate over link S-R1 is 0.3%.

one of these two paths. This can be used to calibrate the quality
of all techniques under consideration.

Fig. 10 suggests that our algorithm improves the throughput
by 35%—-45% compared to DEL, INC, and AVG on the average.
When it is compared to EWMA, it improves the throughput by
65%. Fig. 11 depicts the throughput curves when a loss rate
of 0.3% over Link S-R1 is introduced. Again, our algorithm
outperforms EWMA, DEL, INC, and AVG.

Table 2 compares the unnecessary retransmission rates among
various algorithms. It shows that our algorithm is very effective
in reducing the number of the unnecessary fast retransmissions
in a multipath network environment.

C. Overhead Comparison: Our Method and RR-TCP

As shown in the foregoing subsections, the performance of
our method is comparable to that of RR-TCP. In fact, the con-
nection throughput of AVG-DEV is very close to that of FA.
Its unnecessary retransmission rate is almost identical to that of
FA. However, FA needs to maintain a histogram of the lengths
of the reordering events. The histogram records up to 1000
reordering events. Each record consists of a four-byte times-
tamp and a four-byte pointer. Thus, the histogram requires up
to 8000 bytes of memory space. It is scanned and updated
for every detected reordered packet. On the contrary, what our
algorithm requires is a few (less than 20) counters. The val-
ues stored in these counters are updated using a set of simple
arithmetic formulae as described in Section IIl. These coun-
ters require no complicated data structures. They are used to
store integers and floating-point numbers only. In terms of the
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Table 3. Storage space and execution time comparisons.

Method Storage space | Time spent on recv
AVE-DEV | < 200 bytes 0.52 seconds
FA > 8000 bytes 1.58 seconds

ns-2 runtime performance, we have measured the times spent on
TcpSacklAgent::recv function, which is called when an ACK is
received. On the average over 15 runs, FA spends 1.58 seconds
while AVG-DEV spends 0.52 seconds.

Table 3 summarizes the storage and computational overheads
for FA and AVG-DEV. It shows that our algorithm has negligible
overheads when compared to FA. Our algorithm meets the de-
sign objective by achieving the performance improvement that
is comparable to the best known algorithm so far, without pay-
ing substantial storage and computational costs.

D. Discussion on Fairness Issue

When compared with TCP Reno [10], [19] (the most popular
TCP variant), there are three major changes. First, our proposed
algorithm is installed with an adaptive algorithm to dynamically
determine an appropriate value of dupthresh based on the cur-
rent network condition, whereas TCP Reno is always associated
dupthresh with a fixed value (three by default). Second, when
a spurious fast retransmission is detected, our algorithm applies
the approach used in [12] that a sender uses slow start to in-
crease the size of the congestion window to the value just be-
fore a fast retransmission has falsely occurred. TCP Reno has
no mechanism to detect any occurrences of spurious retransmis-
sion. Third, our algorithm uses a variant of the limited transmit
algorithm described in [12] to allow the sender to transmit a
new segment upon the receipt of the first two duplicate ACKs
and every two duplicate ACKSs received afterwards, while TCP
Reno does not send any new segments until an ACK for a new
segment arrives.

When the sender receives a number of duplicate ACKs, our
algorithm does allow the sender to transmit a new segment upon
the receipt of the first two duplicate ACKs and every two dupli-
cate ACKs received afterwards. This not only maintains ACK-
clocking but also the transmission rate of the sender has been
halved as an indication of network congestion. When an ACK
for a new segment is received before a fast retransmission is
triggered, the longest burst that can be injected into the network
at once cannot be longer than half of dupthresh. Since an ef-
fective dupthresh is always less than the size of the congestion
window, the sender does not increase the consumption of the
netwerk bandwidth. Moreover, unlike TCP Reno, the limited
transmit extension does help to reduce burst lengths in order to
alleviate some adverse effects due to the potential burst injection
when packet reordering exists.

When a packet drop occurs, our algorithm initiates a fast
retransmission and halves the size of the congestion window
when dupthresh duplicate ACKs have received. Though the
sender may delay retransmitting the lost segment, about half of
dupthresh new segments have been sent since the latest train of
duplicate ACKs has occurred. Thus, the effective transmission
rate of the sender has already been halved while ACK-clocking
still maintains.

Combining, our proposed algorithm does permit the sender to
interpret any segment loss as an indication of network conges-
tion and reduce the size of the congestion window by at least
in half. Since our algorithm adapts the same congestion avoid-
ance mechanism as TCP Reno, the sender increases the size of
the congestion window by at most one segment per round-trip
time. Hence, a TCP connection established by using our pro-
posed algorithm is a conformant TCP connection [7]. When
our algorithm is globally deployed, its flow would not increase
its throughput with aggressive manners, break fair sharing with
other conformant TCP flows, and cause congestion collapse
from undelivered packets [7].

V. CONCLUSIONS

We have proposed a simple method to improve the robustness
of TCP on the network paths with persistent packet reordering.
The value of dupthresh is adaptively adjusted with the EWMA
and the mean deviation of the reordering lengths. We have also
developed a mechanism which exerts a reasonable upper bound
on dupthresh to avoid dupthresh too high to trigger a retrans-
mission timeout. In addition, our algorithm includes a mecha-
nism to exponentially reduce dupthresh when the retransmis-
sion timer expires. Our algorithm is engineered to avoid a cer-
tain portion of the false fast retransmissions so as to strike a
balance between the avoidance of spurious retransmissions due
to packet reordering and timely retransmissions of lost packets.

Compared to the previous work, our proposed algorithm is
simple, implementation-friendly, and effective. It achieves a sig-
nificant performance improvement, without the need of adding .
timers or maintaining complex data structures for storing the
reordering information. It meets the design objective by achiev-
ing the performance improvement that is comparable to the best
known algorithm so far, without paying substantial storage and
computational costs.

The simulation results show that our method.

1. Significantly improves the protocol throughput significantly,
as compared to methods proposed in [12];

2. substantially reduces the number of unnecessary retransmis-
sions; and

3. achieves the performance comparable to those in [13] with
less overheads.

There are several possible extensions to our work, some of
which are listed below.

1. Revise the estimators for RTO and RTT to improve the sta-
bility of the dupthresh estimator;

2. devise an adaptive mechanism to dynamically estimate the
values of all pre-defined constants used in our algorithm; and

3. implement and examine the performance of our proposed al-
gorithm on the experimental testbeds.
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