JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005 325

ARM: Anticipated Route Maintenance Séheme in
Location-Aided Mobile Ad Hoc Networks

Seungjin Park, Seong-Moo Yoo, Mohammad Al-Shurman, Brian VanVoorst, and Chang-Hyun Jo

Abstract: Mobile ad hoc networks (MANET) are composed of mov-
ing wireless hosts which, within range of each other, form wire-
less networks. For communication to occur between hosts that are
not within each other’s range, routes involving intermediate nodes
must be established; however, since the hosts may be in motion, a
host that was part of a route may move away from its upstream and
downstream partners, thus breaking the route.

In this paper, we propose anticipated route maintenance (ARM)
protocol with two extensions to route discovery based routing
scheme: Extend the route when nodes on a link move apart from
each other and they have common neighbor that can be “inserted”
in the path, and shrink route when a node discovers that one of its
neighbor which is not the next hop is also on the same route sev-
eral hops later on. By utilizing only local geographic information
(now a part of some route finding algorithms), a host can anticipate
its neighbor’s departure and, if other hosts are available, choose a
host to bridge the gap, keeping the path connected. We present a
distributed algorithm that anticipates route failure and performs
preventative route maintenance using location information to in-
crease a route lifespan. The benefits are that this reduces the need
to find new routes (which is very expensive) and prevents interrup-
tions in service. As the density of nodes increases, the chance to
successfully utilize our route maintenance approach increases, and
so does the savings.

We have compared the performance of two protocols, pure dy-
namic source routing (DSR) protocol and DSR with ARM. The sim-
ulation results show how ARM improves the functionality of DSR
by preventing the links in the route from breaking. Packets delivery
ratio could be increased using ARM and achieved approximately
100% improvement. The simulations clarify also how ARM shows
a noticeable improvement in dropped packets and links stability
over DSR, even though there is more traffic and channel overhead
in ARM.

Index Terms: Location-aided, mobile ad hoc networks (MANET),
reactive, route maintenance.

I. INTRODUCTION

A network that consists of wireless mobile hosts without any
centralized control point or fixed infrastructure is called a wire-
less ad hoc network [1], [2]. Since these hosts may move, the

Manuscript received July 28, 2003; approved for publication by Dong-Ho
Cho, Division III Editor, February 23, 2005.

S. Park is with the Department of Computer Science, Michigan Technological
University, USA, email: spark@mtu.edu.

S.-M. Yoo and M. Al-Shurman are with the Electrical and Computer Engi-
neering Department, University of Alabama in Huntsville, USA, email: {yoos,
al-shum} @eng.uah.edu.

B. VanVoorst is with the Honeywell Labs. in Minneapolis, USA, email:
brian.vanvoorst@honeywell.com.

C.-H. Jo is with the Department of Computer Science, California State Uni-
versity Fullerton, USA, email: jo@ecs.fullerton.edu.

network is dynamic—causing the topology of the network to
change in unpredictable ways. Each mobile host (or node) has
a limited transmission range. Therefore, if a node (source node)
needs to communicate with another node (destination node) that
is not within its range, the source node must find the intermedi-
ate nodes (bridge nodes) that will relay the message all the way
to destination (called a'route or path). Finding and maintain-
ing such routes in ad hoc networks are very challenging tasks
due to mobility of the hosts. Route failure occurs when an in-
termediate node can no longer communicate with its upstream
or downstream neighbor. When a route fails, time will be spent
finding a new replacement route. The term route lifespan refers
to the amount of time the route can function without failing.

A popular classification of the routing algorithms is based on
the time when the route is determined. In proactive algorithms
[3]. each node constantly updates and maintains the routes to
all nodes in the network. Another class of algorithms called
reactive algorithms [4]-[6] start finding routes only when nec-
essary. Recently developed routing algorithms [7]-[9], [23] are
the examples that adopt approach using geographic information
via global positioning system (GPS) or other means. Location-
aided routing (LAR) [7] uses reactive approach when a node in
the network wants to find the position of a destination, and dis-
tance effect algorithm for mobility (DREAM) [9] uses proac-
tive approach by constantly exchanging position information
among nodes of the network. Greedy perimeter stateless rout-
ing (GPSR) [8], [23] introduces a novel method called perime-
ter routing that guides the packet when there is no next avail-
able node in greedy forwarding. Even though both methods use
global flooding to find the destination nodes for the first time,
the position information of the nodes can reduce the consider-
able amount of search space for later search.

The route discovery process in most algorithms uses two
types of control packets: Route request packet (REQ) and route
reply packet (RPY). When a node s wants to send a message to
another node d, s issues a REQ that is flooded through the ad
hoc network. When d receives the REQ packet, it sends RPY
packet back to s informing that the path has been established.
On receiving the RPY, s starts to send the data packets.

Finding a route in wireless networks requires considerable re-
sources (time, bandwidth, and power) because it relies on broad-
casting. Therefore, it makes sense to protect this investment.
However, most of the protocols described above do not put much
effort into path maintenance. Ad hoc on demand distance vec-
tor (AODV) [6] and dynamic source routing (DSR) [4]-retain
only one path from any source and destination pair. When a
link is broken, the upstream node of the link propagates the in-
formation to all source nodes. On receiving the notification of
a broken link, source node can restart the route finding process

1229-2370/05/$10.00 © 2005 KICS

326 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005

Table 1. Location notation.
Formula | Description
(p,yp): | position of node p at time ¢;
v;(p) velocity of p at time #;
d:(p) p’s direction of movement at time ¢;
|(p,q)|; | distance between p and q at time t;

if the route is still desirable. Temporally ordered routing al-
gorithm (TORA) [2] takes a different approach and maintains
all the paths from source to destination pair and uses the most
promising path for packet delivery. When a link in the path is
broken, alternative paths to the destination will be used with pos-
sible reconfiguration of links according to the height values as-
sociated with each node. The protocols described above start to
search for a new path only after some link is broken, which may
cause unexpected delay in packet delivery. This is not desirable
especially for the systems that support QoS. Route maintenance
problem has keen attention in recent literature [14]-[17].

Contrary to those proposals, we want to use the local infor-
mation only based on anticipation of the failure of routes. In
this paper, we propose anticipated route maintenance protocol
(ARM) that will allow routes to have longer route lifespans with-
out interrupting service by replacing as unsafe link with stable
one(s). The approach is best integrated with reactive routing
algorithms for hosts that have geographic location information.
In ARM, a predefined value T (expected time to find replace-
ment link(s) for a unsafe link) is very important. We have sim-
ulated the performance of two protocols, pure DSR and DSR
with ARM, and the simulation results show how ARM improves
the functionality of DSR by preventing the links in the route
from breaking. Packet delivery ratio could be increased using
ARM maintenance and achieve approximately 100% improve-
ment. The simulations clarify how ARM shows a noticeable
improvement in dropped packets and links stability over DSR,
even though there is more traffic and channel overhead in ARM.
The overhead could be controlled by choosing the right value for
T which depends on the node density in the network. After all,
we have found that ARM is an efficient scheme in wireless ad
hoc networks because of its preventive action to save the links
before we lose any packet.

This paper is organized as follows. Section Il introduces back-
ground (notation) of the ARM scheme. Section III introduces
the ARM scheme in details. Section IV explains the simulation
environments. Section V shows the detailed simulation results.
Finally, Section VI makes a concluding remark and mentions
further research.

II. BACKGROUND

A. Notation

Quite often, a node (source node) s wants to send a packet to
another node (destination node) d that is not a neighbor of s. For
a successful transmission there must be a series of bridge nodes,
b1, b2, - -, by, that relay the packet from s to d. These ordered
set of nodes (s = bg, b1,ba, - ,bym,d = by,yy) is referred to
as a path from s to d and denoted as P(s, d). A link connecting

Fig. 1. Node p and ¢ are in range of each other, but their movement will
cause their link to break. Node r can bridge the gap. B, and B, are
the locations p and g will be at when the link breaks.

two consecutive bridge nodes b;, b1, is denoted as (b;, b;11).
We use p > ¢ to indicate that node ¢ appears later than node
p in the path. For any two neighbor nodes, b; and b;1, in a
path, b; is called upstream of b,11, and b; 1 is downstream of
b;. Note that every bridge node, b;, has exactly two neighbor
nodes, b;_1, b;+1, in the path. We assume that all nodes are in
2D plane. Some of the values related to nodes in the location-
aided mobile networks are shown in Table 1.

Note that the speed and direction of a node can be deduced
from the position of the node at time ¢; and ¢;,;. Nodes p and
q are said diverging at time i, if |(p, ¢)|; < |(p, q)|i+1, and con-
verging otherwise. Refer to Fig. 1. Let R, and A, denote the
radius and the area of the transmission range of node p, respec-
tively. Link (p,q); is said to be in an unsafe state if it is pre-
dicted to break in time less than or equal to 7" (the value of T’
is described in Section HI). We predict a link (p, ¢) to break if
it meets two conditions: 1) |(p, ¢)lixr > R, and 2) d;(p) and
d;(q) are diverging. (The expected time that the link will break
is the same for both p and q.)

B. Previous Work

Lee and Gerla [18] proposed AODV-BR algorithm. This al-
gorithm utilizes a mesh structure to provide multiple alternate
paths to existing on demand routing protocols without producing
additional control messages. Data packets are delivered through
the primary route unless there is a route disconnection. When a
node detects a link break, data packets can be delivered through
one or more alternate routes and are not dropped when route
breaks occur. Route maintenance is executed utilizing alternate
paths. In this algorithm, the alternative route is utilized only
when a primary link is broken while, in our proposed scheme,
the route is dynamically established before a link is broken.
Therefore, message delay will be less in our scheme. Further,
their scheme may not work if the alternative route fails as well.

Li and Mohapatra [19] introduced LAKER, a location-aided
knowledge extraction routing. This approach reduces the flood-
ing overhead in route discovery by extracting knowledge of the
nodal density distribution of the network and remembering the
series of locations along the route where there are many nodes
around. However, this scheme does not deal with route mainte-
nance.

PARK et al.: ARM: ANTICIPATED ROUTE MAINTENANCE SCHEME IN LOCATION-AIDED... 327

Stojmenovic et al. [20] proposed depth first search and lo-
cation based localized routing and QoS routing in wireless net-
works. This scheme considers a connection time (estimated life-
time of a link) as a QoS criterion. Here, the method for esti-
mating time of disconnection was mentioned, and the method is
similar to ours.

Stoimenovic [21] proposed location update scheme for effi-
cient routing in ad hoc wireless networks. Here, location up-
dates are done when a certain pre-specified number of links in-
cident to a node have been established or broken since the last
update. The paper claims that distance based updates and move-
ment based updates may have limited usefulness in ad hoc net-
works. It suggests an update when a certain pre-specified num-
ber of links incident to a node have been established or broken
since the last update. In our proposed scheme, an expected time
to replace link(s) for a unsafe link is used instead of the number
of links established/broken.

Stoimenovic [22] reviewed many position based routings in
ad hoc networks. The accuracy of the destination’s position
is an important problem to consider for efficient routing. It is
shown that routing protocols that do not use geographic loca-
tion in the routing decision may not be scalable. It is likely
that only position based approaches provide satisfactory perfor-
mance for large networks. Greedy mode routing was shown to
nearly guarantee delivery for dense graphs, but to fail frequently
for sparse graphs since the destination is also moving and it is
not clear where to send message. The routing process is con-
verted from the greedy mode to recovery mode at a node where
greedy mode fails to advance a message toward the destination.
Our proposed scheme is scalable since the scheme is based on
distributed, local geographic information.

1. ARM: ANTICIPATED ROUTE MAINTENANCE
SCHEME

In this section, we present an algorithm that efficiently main-
tains the paths that are already established, despite the move-
ment of the nodes. The assumptions we make are:

1) A reactive routing algorithm exists. The LAR can be a can-
didate because it uses geographic information and reduces
the need for flooding. More candidates based on Voronoi
diagram and convex hull are shown in [24].

2) Each node knows its current position, speed, and direction
of moving (i.e., with GPS).

3) Each node maintains a table that contains the positions,
speeds, and directions of movement of all its neighbors.

4) Each node also maintains a route table that contains all
routes passing through it. The content of the table includes
the addresses of the route source, destination, and upstream
and downstream nodes for each route.

5) Each node in a route knows its order in the route based on
hop count.

6) All links are bidirectional and all nodes have the same trans-
mission range.

7) The links of candidate nodes for expand and shrink routines
(explained later) are not broken during the execution of the
routines. Also, the batteries of the candidate nodes are not
drained out during the execution of the routines.

Fig. 2. Expand algorithm finds node r to fill gap between p and g, allow-
ing path to stay alive. Node r’s communication range is represented
by the circle.

Not all of these assumptions are strictly necessary, for ex-
ample, 6) above can be relaxed if every pair of neighbor nodes
select only bidirectional links between them by handshaking.

Based on local geographical information stored at each node,
the proposed algorithm, ARM, predicts any route failure due
to node movement, and therefore, is able to perform dynamic
route maintenance. ARM consists of two routines: Expand and
shrink. We explain each routine in detail below.

A. Expand Routine

Since nodes in ad hoc networks are migratory, if two adjacent
nodes in a route move out of each other’s transmission range,
then the link is broken, and so is the route. Let p and ¢ be up-
stream and downstream nodes of an unsafe link, respectively.
The main function of the expand algorithm is to prevent the
route from breaking (thus saving the network from having to
undergo an expensive search for a new route). To do this, we
must find additional bridge nodes between p and ¢ before the
break occurs and adjust the route accordingly. Refer to Fig. 1.

Suppose link connecting node p and node ¢, p > ¢, becomes
unsafe at time ¢, and is estimated to break at time ¢;. Since
each node has a table containing information about all neighbor
nodes, node p selects a bridge node r from A, N A, at time ¢,
which is shown in Fig. 2. (This region can be calculated based
on the geographic information of p and g.) Then, just before the
disconnection of the link, node p informs node r that r has been
chosen as part of the route. Note that since g is still in the range
of p, it can listen to the notification from p to r, and prepares to
receive packets from r. Therefore, after ¢ moves to position ¢,
the new route willbe (s, ,p,r,gatq’,--- ,d).

In general to achieve long lifespan of paths and prompt de-
livery of packets, a bridge node, b, for (p,q) should be cho-
sen such that the two resulting links (p, b) and (b, ¢) last longer
than the results of other choices. Therefore, for all nodes
bi,bo, - ,bm € Ap N A, the chosen bridge node should
satisfy max(min(lifespan of (p, b;), lifespan of(b;, ¢))), for all
b; € {b1,ba,--- ,bn}. (Lifespan can be calculated using for-
mula in Section III-A.2.) If the chosen node is “busy” by being
part of many paths already, the node forming the links with the
next longest lifespan can be selected. Further enhancement on
this topic will be discussed in Section III-C.

328 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005

If there is no bridge node available in A, N A,, then there are
two possibilities to save the route: 1) Find a route from p to ¢
when ¢ will be at location (x4, y4)s using multiple nodes or 2)
find a route from p to ¢’s downstream neighbor that does not use
q at all (a partial new path). We devote our research to Case 1,
as our simulation shows that this has more payoff. Case 2 can
be performed by simply using the existing routing algorithm and
will not be discussed here.

To do Case 1, we must select a bridge node that is outside of
Ap N A, at time t;, because no node is available in this intersec-
tion. We are looking for two bridge nodes, b; and b2, that will
form a path to q at (x4, y4)5- Node b; must be within the range
of p now, so p will broadcast a control message to all nodes in
it’s range requesting a reply if they have a neighbor by that will
be in position to talk to g at (z4, yq)s. If there are nodes b; and
b, that fulfill these requirements, we can form a bridge path p,
b1, by, that will keep the link alive. Node p then notifies by,
which in turn notifies bo, of the new link. If p is unsuccessful
in fixing the anticipated failure, p has the option of notifying
another node j, where 7 > p, of the failure and allowing it to
execute the expand algorithm.

Al 'Deciding When to Invoke Expand

A bridge node has to be chosen before the link is broken in
order to keep the packet flow from being interrupted. An impor-
tant question to answer is when the bridge node is chosen and
starts to receive/send packets to next node in the path. Recall
that link (p, q); is said to be in an unsafe state if it is predicted
to break in time less than or equal to 7. T is the estimated
time it would take to find the necessary bridge nodes and de-
pends on not only the density of the network around p and ¢
but the speeds of p, g, and all their neighboring nodes. T is an
experimental value from an average time to fail (TTF) from all
the nodes. As the network becomes sparse, the value of T gets
larger. This is because if network is sparse, and therefore no
node is available to be a bridge node for (p, g), then p has to
inform its upstream node in the path to find a new path to g or
¢’s descendents. Since this process may take longer time than
p’s finding a bridge node, T should be larger. In Section V, we
will report our simulation results based on various values of T'
inversely proportional to the number of nodes in p’s range. Note
that whenever a link becomes unsafe, the expand routine is in-
voked and executed, regardless of whether the path is currently
being used for communication or not.

A.2 Determining the Position When a Node Becomes Unsafe

As shown in Fig. 1, suppose current positions of two neighbor
nodes p and ¢ at time ¢; are p; = (Tpi, Yps) and q; = (Tgs, Ygi)s
respectively. B, (Bp, resp.) is the intersection point of d’s
(dp’s, resp.) trajectory and boundary of A, N A,, i.e., where
node g will leave the range of p and break the link. The positions
of p and ¢ at time ¢;, where j > 4, become p; = (zp;, Yp;)
and-q; = (Zq5,Yq;), Where z,; = xp; + (t; — t;)vpcosf,
Ypj = Ypi + (tj — ti)vpsing , xg; = xg + (t; — ti)vgcos
and yg; = Yqi + (t; — ti)vg sin a. (0 and « are angles of dj, and
dg, respectively, measured in polar coordinate system.) Let R be
the transmission range. Therefore, the time for node p (q, resp.)

to reach B, (B, resp.) from current position is T, 5 (I8, resp.)
= SQRT (R? — (zpi — 34i)(Tpi — Tgi +2) — (Upi — Yqi) (Ypi —
Yqi+2))/ (v, cos 0 —v, cos a)? + (v, sin § — v, sin a)?), i.e., the
amount of time left until the break will occur. Therefore, with
the given value of Ty (recall that T, is the predefined amount of
the time taken for link (p, g); from unsafe state to broken state),
the position of node ¢ = (4, y,), where ¢ falls into an unsafe
state, is zg = 24; + (Typ — Tg)vpcosa , yq = Yq + (Typ —
Tq)vpsina.

A.3 Managing Path Length

It is possible that the expand routine can lead to very long, but
useable, paths. We propose a simple heuristic by which a source
node may choose to find another path. Suppose source node, s,
knows the number of hops, H, on it’s path to destination, d. (To
find H, s may need to send a control message to d, and have
it returned.) Let R4y ¢ be the average transmission ranges of
nodes in the network. If H x Rayg > r x |(s,d)|, where r
is a predefined value to prevent the paths from becoming un-
necessarily long, it is better to abort the path and rebuild it. Our
simulation results show that the proper r value lies between 1.5
and 2, and in our experiments traffic reduces as much as 17%.

B. Shrink Routine

The shrink routine handles the case where bridge nodes in a
long path have come close to each other, allowing for a possible
shortcut. This optimization is useful in general, but also serves
to help “prune” paths that may become long due to the expand
phase.

The shrink algorithm requires that each node record its posi-
tion (in terms of hops) for each route it is a part of. That is to say
that a route with n nodes, has hop-positions 0,1,2,--- ,n — 1.
If a node n; is in position j, of the route it stores value j x 1000
as it’s position in the route. (The reason for the multiplication
will be explained later.) We call this value the position-in the
routing order.

In order for the shrink phase to work, nodes must exchange
some route table information when they come within range of
each other. Specifically, when two nodes n; and n; come within’
range of each other, they will exchange control packets that con-
tain the routes they are a part of, and their position in the routing
order. If nodes discover that they are both part of the same path
then they are called friend nodes.

There are two cases for shrinking the path. The easiest (and
probably most common) is if two (and only two) nodes discover
that they are friend nodes at the same time. If n; and n; are
friend nodes they can shorten the path by directly routing from
one another (skipping 1,11, 7442, - ,7j_1). A more patho-
logical case exists when several nodes determine they are all
friend nodes at the same time. If there are f friend nodes, we
could pick (f? — f)/2 different shortcuts. However by pick-
ing the node earliest in the path and making a route to the node
latest in the path (using the position in routing order) will be
the best shortcut. For example, if nodes p, ¢, and r with route
positions 3000, 8000, and 11000, respectively, all discover that
they are friend nodes at the same time, and node p should route

PARK et al.: ARM: ANTICIPATED ROUTE MAINTENANCE SCHEME IN LOCATION-AIDED... 329

d

s q Y

Fig. 3. Shrink case with three friend nodes. Node p will shortcut to .
This will reduce the path by six hops.

directly to node r to skip the most intermediate bridge nodes.
This is shown in Fig. 3.

In order to allow for intermediate nodes that were not a part
of the original route (i.e., due to the expand algorithm), we must
assign to them a position in the routing order. By multiplying
the hop count by 1000, we allow considerable resolution for this
to take place. Consider two nodes that are a part of a path, p and
s, which have positions in the routing order of 4000 and 5000
respectfully. Imagine p and s are moving such that they need a
bridge node between them. Two nodes g and r are found that
can fill this role (resulting in the path p, ¢, r,). We must give
q and 7 positions in the route order so that their relative position
can be determined. We can assign ¢ to have position 4333 and r
to have 4666. If later on a bridge node is needed between p and
q, g and r, or r and s, there is sufficient room to select one.

C. Communication Requirements for ARM

ARM does not require much additional overhead to accom-
plish its task. During expand, a node must only communicate
to its upstream and downstream neighbor its velocity and direc-
tion of movement. After initially communicating this informa-
tion, it need not communicate this information again unless it
changes direction or velocity significantly. By limiting these ex-
changes to only required updates, this communication happens
infrequently. If a node is in an unsafe state, it will need to locate
another node within its broadcast range to bridge the potential
break. This communication is with nearest neighbors and is only
done when needed. Using this approach, ARM does not require
scheduled periodic communication.

The communication for the shrink routine only happens when
two or more nodes come within range of each other, when pre-
viously they had been separated. This communication is only
among nearest neighbors, and strictly speaking is only neces-
sary to take advantage of the shrink algorithm benefits. Expand
and shrink can operate independently of each other.

D. ARM and T Value

The ARM protocol runs periodically in every node. First, it
calculates the expected time that the link connecting its down-

Source S

Destination D

(sec) S-N1 NI-N2 N2-N3 N3-N4 N4-D
1 I~ r r I~ I
3 4 - - I~ r
5 v r v [l I
7 v v v r~ i
9 v v v v T~
11 v | 1 M T
13 W I I |4 4
15 v V WV v v
20 v v v | I
I~ ARM expand will not satisfy the conditions so it will not do the
maintenance.
¥ ARM will run.

Fig. 4. An example of various T values and their effects on route main-
tenance.

stream node would break. Then, if this time is less than or equal
to predefined value 7" (expected time to recover from failure in
worst case), the ARM-expand will perform the expand routine
and try to find a bridge node before a failure occurs and con-
sequently without any interruption in service. Fig. 4 shows an
example of a simple path in an ad hoc network. Here, a number
corresponding to a link is the expected TTF for the link. The ef-
fect of changing the value of 1" on the running of ARM-expand
is shown in the figure. Suppose that we choose a large value for
T, the network is assumed to be sparse. We need a large time
to find a new bridge, so ARM-expand will be active most of the
time and maintaining the routes from failure. When we choose
T = 20, TTFs of all hops will be less than 7" and ARM-expand
will perform maintenance and run for each hop. If we choose a
small value of T (for example, ' = 1), we can see that no TTF
will be less than T, so ARM-expand will not run this time. Note
that the actual time to recover the route is not known and diffi-
cult to measure. Therefore, we can use ARM-expand to measure
the estimated time to recover the route.

The question arises why we do not assign T a large value and
make ARM always perform the maintenance. If we choose a
large value for T, ARM will expand routes that are stable and in-
crease the path length (add redundant nodes). In addition to per-
forming maintenance, the ARM needs to send control packets,
which will increase the channel overhead. On the other hand,
if we choose a very small value for T, ARM may not perform
the expand routine in most cases, and therefore no performance
improvement due to failure avoidance is expected. Thus, one
motivation of simulating ARM is to find a proper value of T,
and consequently to show how ARM can improve any routing
algorithm, especially DSR.

330

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005

220 200
200 1 180
180 el T 160 el T
o 100 =7 | 514 =1
o 4
&0 =75 | 10 e T=§
20 1
2o P3| a0 -1
g 100 B
3 ——T= | &g -
£ %0 g 80
5 60 4 ~—DSR = - ~o--DSR
P o
40 = 40 4
20 2
0 — T T 0 . T T
¢ 20 40 60 80 0 20 40 80
Speed Speed
() ®)
146 100
120 ol k) % - e T
5100] at Al ke T
B3 2 L
% @ =5 E “ R
9 T T3
% 60 - L By o T
5 0 = ——DSR § —4—DSR
i 20 i o
i} T T T 0 T T T
0 20 40 60 8 4 20 40 60 80
Speed Speed
(c} @
80
7 4
e T
Y 60 —h— 7
50 T —— 7§
% o e T3
E =1
5 —a—DSR
2204 ,,JWWM
10
0 T T
9 20 40 60 80
Speed
(&)

Fig. 5. Dropped packets for ARM and DSR with increasing number of nodes (V) with increasing expected recovery times (T): (a) N = 50, (b)

N =40, (c) N = 30, (d) N = 20, (&) N = 10.

IV. SIMULATION ENVIRONMENT

In our simulation model, ns-2 is used [10]. It is a discrete
event simulator developed at UC Berkeley where networking
research is targeted. ns-2 provides substantial support for sim-
ulation of TCP, routing, and multicast protocols, such as UDP,
TCP, RTP, and SRM over wired and wireless (local and satellite)
networks.

To compare the performance of pure DSR (will be referred to
as just DSR) with ARM on top of pure DSR (will be referred to
as just ARM unless otherwise specified), a hypothetical network
is constructed for the simulation purpose and then monitored for
different number of parameters, such as the number of mobile
nodes, movement speed, and expected time to recover 7. We
simulate our model for different number of mobile nodes, from
10 to 50, with 10 nodes incremental. Speed is also varied at
the range of 5 to 70 km/h. Each mobile node in the MANET is
assigned an initial position within the simulation area of 670 x
670 meters. The simulation takes place for 900 second for every

run. Nodes are normally distributed when initialized and the
initial position for the node is specified in a movement scenario
file created for the simulation using a feature within the ns-2.
The nodes randomly move within the simulation area. During
the simulation, every node is in a continuous movement (i.e.,
zero pause time) to resemble the real highly dynamic network
and to evaluate the ARM.

During the simulation, each node can send and receive pack-
ets at a random pattern, that is, a node can send a packet at any
specified time scheduled by the simulator but can not receive
while it is in a sending mode. Each node is equipped with a
single transceiver radio antenna that can either send or receive
packets at a time but not both. With a bandwidth of 2 Mbps, this
has no lagging effects to our simulation results because the node
traffic generator used here is a typical constant bit rate (CBR). It
is programmed to generate four packets every second with max-
imum packet size is 4 kB. Thus, during only 64 millisecond per
second, the node transceiver can be busy sending its own pack-
ets. Most of the time the node will be listening to the media to

PARK et al.: ARM: ANTICIPATED ROUTE MAINTENANCE SCHEME IN LOCATION-AIDED... 331

receive and forward packets for the network.

The radio transmission range for a node covers a circle of a
radius of 50 meter, and the MAC layer uses IEEE 802.11 proto-
col with carrier sense multiple access with collision avoidance
(CSMA/CA) as shared media access protocol to avoid the hid-
den terminal problem [11]. When a node wants to send a packet,
it sends first a short ready-to-send (RTS) packet to the receiving
node, the receiving node in turn will reply with a clear-to-send
(CTS) packet to inform the sending node it is ready, and then the
transmission takes place. When the transmission successfully
takes place, the receiver sends an acknowledgement (ACK) to
inform the sender upon reception [12]. The simulation is event-
driven, and all the simulation events will be logged in a trace file
and then processed using tracegraph software [13] to extract the
needed statistics.

In this simulation, we will study some performance metrics
to compare the ARM with the standard DSR. The following are
the main metrics to be used:

e Number of dropped packets which is an indirect measure to
the number of disconnections occurred between the nodes
during the simulation.

e Number of dropping nodes which measures the actual num-
ber of the nodes that show a disconnection during the data
transmission.

e Average path length in hops to measure the effect of ARM
on the path length and the packet delay.

There are other metrics we will consider in addition to those
mentioned above, but we will give a clear explanation later when
we use them.

V. SIMULATION RESULTS

A. Number of Dropped Packets

In the first part of the simulation, the number of dropped pack-
ets for both DSR and ARM is shown in Fig, 5 with varying node
speed for different number of mobile nodes and variation of ex-
pected time to recover 7. In all figures in this section, five dif-
ferent T values (1, 3, 5, 7, and 9) are simulated for ARM.

It is clear from the figure how the various node speeds can
affect the number of dropped packet for both DSR and ARM.
As the speed increases, the number of dropped packets will in-
crease, but ARM shows an improvement by changing the value
of T' (the expected time to find new bridge node in worst case).
As we increase the " value, the number of dropped packet de-
creases. The result holds regardless of NV, the number of nodes.
This is logical because the expand routine in ARM will fix the
route by inserting bridge node, if the link connecting down-
stream node is detected to break within a period of time smaller
or equal to T'. Thus, it we assign a large value for T, the rou-
tine will run most of the time and expand the routes by inserting
bridge nodes because all the links will satisfy the condition (TTF
< T). On the other hand, the small value of 7" will prevent the
expand routine from running, i.e., TTF > T. In this case, real
maintenance protocol will be the same as DSR; this will lead
curves for ARM to come close to DSR because our base proto-
col for ARM is DSR.

The shrink routine in ARM has no effect on the number of

o NS0
e Ned)
- N30
20
10
60 i
50

40

of dropped packets

4

T value

Fig. 6. Dropped packets for ARM and DSR with various N and 7.

dropped packets in the network, because its only function is to
reduce the path length by pruning any unnecessary nodes and
shorten the path length. If ARM-shrink makes any route unsafe,
ARM-expand will fix this and convert it to safe.

Another interesting observation from the simulation result is
how the number of nodes in the network affects the choice for
best value of T. Refer to Fig. 6. The smaller is the number of
mobile node, the larger is the time to find new route because the
network becomes sparse and no bridge node will be available to
prevent the route failure. For example with N = 20, we can see
that the number of dropping packets after T = 7 does not show
much improvements. Here, the actual value of T, the recovery
time for the link break is slightly less than 7 sec. Actually, there
is difficulty to measure the exact value due to many factors such
as the uncertainty of node direction, position accuracy from GPS
system, and transmission fading loss. For another example with
N = 40, we can see that the continuous, sharp decrease in the
curve until the value of T"is 5. After 5, the curve shows stability.
The value of this “border” point relies upon the actual value for
time to recover, to be more specific, it is slightly greater than
the actual value. In our simulation, results show that the value
of T' is between 3 and 5 when N = 40, between 5 and 7 when
N = 30, and between 1 and 3 when N = 50.

B. Number of Packet-Dropping Nodes

In this subsection, we will study the number of the packet-
dropping nodes relative to mobile node speed and the variable
T. As we mentioned earlier, the value of T is correlated with
the network topology and nodes density. Refer to Fig. 7.

In the figure, it can be observed that the larger the number
of nodes is, the smaller the ratio of packet-dropping nodes is
for both protocols. For example, when N = 10 at speed 70
km/h and T' = 1, we can see that nine out of ten are drop-
ping nodes, that is, 90% of the nodes has dropped at least one
packet, while ten out of ten (100%) are packet dropping nodes
with DSR. By changing N to 50 nodes with the same configu-
ration as above (1" = 1), both protocols show an improvement
in packet-dropping nodes number. Here, ARM shows 34 out
of 50 (68%), while DSR shows 33 out of 50 (66%), nodes are
packet dropping. With N = 50 and T' = 9 with the same speed,
ARM shows only 11 out of 50 (22%) nodes are packet-dropping.
Thus, with the same configuration, ARM can reduce the packet-

332

40
a 35 7
< Lt
g 3 e T9
0 ——I=7
£ 25
& —— =5
% 20 ¥ T=3
15 et
& —o—DSR
210
<
% 5 -
4] T T T
0 20 40 & 80
Speed
(@
25
g 20 : TS
2 —h— T=7
=
0 —X—T=5
£ 157 —— T3
E .
1‘3 e T
% 10 iy ~——DSR
B3
=
Y
=] 5 7
B
0 T T T
0 20 40 60 80
Speed

©

of packet-dropping nodes

of packet-dropping nodes
&

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005

35

30

£]
!

oo
1

#of packet-dropping nodes
£ o
1 1

(5}
L

[T T
0 20 40

Speed

()

25 7
20 7
15 7
10
5 -
0 T Y T
0 20 40 60 80
Speed
(®
20
e T=9
159 —— 77
—H— =5
—%—T=3
@ T
- DSR
54
0 T T T
[} 20 40 60 80
Speed
@
i TG
—h— 77
——T=5
—¥— T3
—]
~&—DSR
T
60 80

Fig. 7. Number of packet dropping nodes for ARM and DSR: (a) N = 50, (b} N = 40, (c) N = 30, (d) N = 20, (¢) N = 10.

dropping nodes to one third relative to DSR if we choose larger
value for T'. Also, we can see from the plots above that the
difference between curves becomes smaller as the number of
the nodes in the network decreases i.e., the distance between
DSR curve and ARM curves becomes smaller and sometimes
the curves intersect.

C. Average Path Length

Next, we will study the effect of the ARM maintenance pro-
tocol on the average path length in hops between sender and
receiver nodes since the longer path will lead to longer packet
delay. As discussed before, the ARM-expand routine may in-
crease the lengths of paths between the sender and receiver by
adding more nodes to the paths (more hops), while the ARM-
shrink routine tries to shorten the route by trimming the redun-
dant hops.

Refer to Fig. 8. We can see, by increasing the number of

nodes, the path length will increase gradually. It is reasonable,
as the number of nodes increase, the ARM expand routine may
find more available nodes within the transmission range of the
upstream node to insert in the link with its downstream node.
Thus, more nodes are expected to be pushed in the route to
avoid the service failure. On the contrary, with a small num-
ber of nodes in the network, the upper stream node may not find
any available node within its transmission range to fix the route.
Thus the path length will not be affected, but this leads to higher
probability of link failure. Another result we can see is that, by
increasing the speed of the mobile node, the average path length
will increase. Since the probability for time to recover (1) to
exceed TTF for the links is high (high mobility makes TTF be
small), the ARM-expand will be in duty to push bridge nodes
continuously.

As the T value increases, many bridge nodes will be inserted
into the paths by ARM-expand routine, which will cause the

PARK et al.: ARM: ANTICIPATED ROUTE MAINTENANCE SCHEME IN LOCATION-AIDED...

average path Jength (hops)

40 60 80
Speed
(a)

20

average path length (hops)

20 40 60 80

average path length (hops)

average path length (hops)

333

20

20 60

Speed 0 80
© Speed
@
6
5 4
=
k)
17
%
a 2 4
g
1 4
i

20

40

Speed
O]

80

Fig. 8. Average path length for ARM and DSR for various values of T: (a) N = 50, (b) N = 40, (c}) N = 30, (d) N = 20, (e} N = 10.

ARM curve to exceed the DSR curve. In our simulation, DSR
curve resides between the ARM curves for 7' = 1land T = 3
in most of the plots. With T" = 1, average path length in ARM
protocol is less than that of DSR, whereas it is opposite with
T = 3 or above.

Now let us have a look on the effect of ARM-shrink on the
path length. Since the path may become quite long due to ARM-
expand routine, ARM-shrink will shorten the path by pruning
the unnecessary links in the path.

When T is chosen to be large, ARM-expand will be on duty,
and regardless of the value of T, the ARM-shrink will be also
on duty. With that large value of 7', ARM-expand may increase
the path length continuously and this leads to longer path length,
whereas the ARM-shrink will prune the path and eliminate any
unnecessary link, if found. However, ARM-shrink will not elim-
inate any bridge nodes inserted by ARM-expand if it causes any
interruption in service to achieve QoS. The number of nodes

added to the path is usually greater than the number of nodes
eliminated by ARM-shrink.

When T is chosen to be very small it will lead the ARM-
expand not to satisfy the condition (TTF < T'), and the path
length will not be affected by ARM-expand. However, ARM-
shrink is always on duty, so the path will be shortened by ARM-
shrink, whenever applicable. This is the reason why ARM
curves for path lengths are distributed below and above the DSR
curve. We can see that when T = 1, ARM curve resides below
the DSR regardless of number of mobile nodes, and as the value
of T increases, the ARM curves move up and exceed the DSR
curve. With T' = 9, the average path length in ARM is around
the twice of the DSR path length.

334 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005

12000000

3200 O Number of lost
3000 | — packets 10000000
2800 ~]]Ilirlnzgtesr of dropped 8000000 - ERTS
2600 - ! neTs
0O Number of generated 6000000 1 OACK
2400 1 palt:nl:efsr oE ¢ — B Data
2200 - 4000000 1 DRoute
2000 T ; 2000000 - -
%Q- //\\ //L’\ //®
N ¢ \ ¢ 0 .
§ y‘.§ V?§\ DSR ARM(T=1) ARM(7=5) ARM(7=9)
DSR ARM ARM ARM DSR ARM ARM ARM
=D |T=5|T=9 T=1) | T=5 | T=9
Number of 2481 2481 2481 2481 Route | 1312030 | 1480230 | 1742030 | 2082030
generated packets Data 1086032 | 1077320 | 1056000 | 1026032
Number of 137 118 58 36 ACK 1420000 | 1500000 | 1580000 | 1750000
dropped packets CTS 1175422 | 1355422 | 1625422 | 2595422
Number of 367 297 72 20 RTS 2140000 | 2450000 | 3520000 | 3710000
lost packets
Packet delivery 797 833 94.8 97.7 Fig. 10. MAC layer statistics for DSR and ARM.
ratio (%) '

Fig. 9. Application layer statistics for various values of T'.

D. Application Layer Statistics

In this subsection, we will show the application statistics for
the same ad hoc network. Refer to Fig. 9. Here, the number of
nodes in the network is 50 with the average speed of 20 km/h.

The figure shows that how efficient ARM is in terms of the
number of both dropped and lost packets. Lost packets are dif-
ferent from dropped packets and defined as packets sent by the
source and never received by the destination. With the same
number of generated packets, we can see that the DSR can
achieve a packet delivery ratio of 79.7% while ARM shows a
better packet delivery ratio that ranges from 83.3% at T = 1 to
97.7% at T = 9.

We have noticed how the large value of T' can increase the
packet delivery ratio, but that does not mean that choosing a very
large value for T' is always good. After a certain value of 7T, the
improvement in network performance is negligible. In addition,
a large value of T' means more traffic and more overhead in the
network as we will explain next.

The overhead for ARM will be clear if we turn to study the
MAC layer statistics. In order to expand the route we need to
send a packet to the neighbor nodes and receive the reply from
the nodes that received the packets, and then inform the down-
stream with the change. In addition, we need to send an ac-
knowledgment for the bridge node. All theses packets produce
more traffic and increase the overhead on the shared medium.
Shrinking the routes needs the nodes to exchange some rout-
ing table information when they close within the range of each
other, and this information exchange will increase the channel
overhead. Next, we will compare the data on MAC layer.

E. MAC Layer Statistics

Fig. 10 shows the amount of MAC layer packets for both DSR
and ARM with different values of T'. It is based on 50 mobile
nodes with a fixed speed of 20 km/h. Here, the number of MAC
packets in ARM is much greater than that in DSR. Specifically,
for routing packets the ARM will send more route request than
DSR due to the longer paths, and so will the reply packets by
the same reason. RTS/CTS/ACK are exchanged between sender
and receiver nodes for reliable delivery of the packets. In ARM,
these packets are more than those in DSR. For example, when
T =9, the RTS in ARM is almost twice compared to DSR.
The data packets in MAC layer in DSR are more than those
in ARM. As explained earlier, DSR shows more frequent link
failure; thus, there are more data packets dropped and lost in
DSR, and more data retransmission is required in DSR. Next,
we will compare the data on network layer.

F. Network Layer Statistics

Refer to Fig. 11. The number of overall packets in ARM is
greater than that in DSR. Note that the number of route error
packets in ARM is less than that in DSR due to more packet
losses in DSR that need to be fixed and notify other nodes about
the faulty connection. On the other hand, the total number of
both route request packets and route reply packets in ARM is
larger than that in DSR, although the ARM sends request to find
a bridge only to the node neighbors who can be reached in one
hop request. In this case, every neighbor will reply to this re-
quest. Therefore, the total number of routing packets in ARM is
larger than that in DSR.

G. Number of Breaks

In this and next subsection, we varied the number of nodes
and transmission range (50 or 75 units). We assume that path
lifespans range 2-10 timesteps that is relatively short. There-
fore, efficient route maintenance is critical. Fig. 12 shows the

PARK et al.: ARM: ANTICIPATED ROUTE MAINTENANCE SCHEME IN LOCATION-AIDED... 335

70000
60000
50000 -
40000 1
30000 -
20000

10000 -

O Route error
W Route replies

O Route request

0

T T T

DSR ARM(T=1) ARM(T=5) ARM(7=9)
DSR ARM ARM ARM
T=1)|T=5|dT=9
Route request | 14358 | 16485 22854 26985
Route replies | 25253 | 26390 28620 33530
Route error 9433 8865 6667 4267
Total 49044 | 51740 58141 64782

Fig. 11. Routing statistics in network layer for DSR and ARM.

100 : . — 1

/»fw«-—— I
P — f___,f-—"&

90 t ,f P
3 | Bz
2 { L
g j e
g sorf -
o res
1=
5 /J
2 /
= 7
e 707 /
3
;‘-: /
s /
2 60f /
= sy
¢
4 /

507 /

Range of 50 ‘é——-’,
O Range of 75 —
40 K2, ; . \ . . ;
0 50 100 150 200 250 300 350

Number of nodes in ad hoc network

Fig. 12. The number of potential link failures that can be adverted with
the expand algorithm increases as the network density increases.
Results for nodes with a broadcast range of 50 and 75 are shown.

percentage of breaks that can be saved when using a broadcast
radius of 50 and 75 units. Here, the expand routine can save
from 30% to 100% of the breaks depending on node density.

H. Number of Nodes Involved in Flooding

An important savings from route maintenance is avoiding the
cost of flooding needed to find a new route. We computed the
number of nodes that would participate in a flood-based route
discovery from the source in the event of a failure. We lim-
ited the range of the flood to a depth of 5, and only counted
each node once (although a node may receive multiple flood
messages from neighbors). As network density increases, the
number of nodes participating in route-finding flood increases,
as shown in Fig. 13. To summarize, as the number of nodes in-
creases, the chance to successfully perform route maintenance
increases and so does the savings.

350

Y
Range of 50 k4
Range of 75

300
250
200
150 ¥

100

Number of nodes involved in flooding within 5 hops

50

0 - A : N i, i i
50 100 150 200 250 300 350

Nurber of nodes in ad hoc network

Fig. 13. Number of nodes participating in flooding with depth of five
increases rapidly as the density of nodes increases. Results are
shown for nodes with broadcast range of 50 and 75.

VI. CONCLUSION AND FUTURE RESEARCH

In this paper, we have proposed an efficient route maintenance
protocol. By utilizing only local geographic information (now
a part of some route finding algorithms), a host can anticipate
its neighbor’s departure and, if other hosts are available, choose
a host to bridge the gap, keeping the path connected. We have
presented a distributed algorithm that anticipates route failure
and performs preventative route maintenance using location in-
formation to increase a route lifespan. The benefits are that this
reduces the need to find new routes (which is very expensive)
and prevents interruptions in service. As the density of nodes in-
crease, the chance to successfully utilize our route maintenance
approach increases, and so does the savings.

We have compared the performance of two protocols, pure
dynamic source routing protocol (DSR) and DSR with ARM.
The simulation results show how ARM improves the function-
ality of DSR by preventing the links in the route from break-
ing. Packets delivery ratio could be increased using ARM and
achieved approximately 100% improvement. The simulations
clarify also how ARM shows a noticeable improvement in
dropped packets and links stability over DSR, even though there
is more traffic and channel overhead in ARM. The overhead
could be controlled by choosing the right value for T° which de-
pends on the node density in the network. After all, we have
found that ARM is quite effective for route maintenance in the
ad hoc networks because of its preventive action to save the links
before we lose any packet. While the ARM-expand routine tries
to add nodes in the route, the ARM-shrink routine trims any un-
needed hop leading to shorter and usable path.

The proposed scheme is simple to implement and scalable
since the scheme is based on distributed, local geographic in-
formation [22]. Even though ARM has been implemented on
DSR in this paper, it could be added to any routing algorithm
that operates based on location information. In this paper, we
assumed all paths are bi-directional (since all links are assumed
bi-directional). In the real world, transmission range of sending

336 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005

and receiving nodes can be different. Therefore, the research
based on unidirectional links would be interesting.

REFERENCES

[11 M. llyas, Ed., Handbook of Ad Hoc Wireless Networks, CRC Press LLC,
2003.

[2] C. K Toh, Ad Hoc Mobile Wireless Networks:
Prentice Halli, 2001.

[3] C. Perkins and P. Bhagwat, “Highly-dynamic destination-sequenced
distance-vector routing (DSDV) for mobile computers,” in Proc. SIG-
COM’94, 1994, pp. 234-244.

[4] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc wire-
less networks,” in Mobile Computing, Kluwer Academic Publishers, 1996,
pp. 153-181.

[5] V. Park and M. Corson, “Highly adaptive distributed routing algorithm for
mobile wireless networks,” in Proc. IEEE INFOCOM’97, Apr. 1997, pp.
1405-1413.

[6] C. Perkins, E. Royer, and S. Das, “Ad hoc on demand distance vector
(AODV) routing,” Internet Draft, IETF, Oct. 1999.

[7} Y. Ko and N. Vaidya, “Location-aided routing in mobile ad hoc networks,”
in Proc. ACM/IEEE MobiCom’98, 1998, pp. 66-75.

[8] B.Karpand H. Kung, “GPSR: Greedy perimeter stateless routing for wire-
less networks,” in Proc. ACM/IEEE MobiCom 2000, 2000, pp. 243-254.

[9] S. Basagni, I. Chlamtac, and V. Syrotiuk, “A distance effect algorithm for
mobility (DREAM),” in Proc. ACM/IEEE MobiCom’98, 1998, pp. 76-84.

[10] Network simulator official site for package distribution, available at
http://www.isi.edu/nsnam/ns.

{11] J. Schiller, Mobile Communications, Addison-Wesley, 2000.

[12] W. Stallings, Wireless Communications and Networks, Prentice Hall, 1st
ed.

[13] J. Malik, “Network simulator ns trace files analyzer,”
http://brylant.ists.pwr.wroc.pl/ jmalek/tracegraph.php.

[14} G. Lim, K Shin, S. Lee, H. Yoon, and J. S. Ma, “Link stability and route
lifetime in ad hoc wireless networks,” in Proc. ICPPW 2002, 2002, pp.
116-123.

[15] W. Su, S.-J. Lee, and M. Gerla, “Mobility prediction and routing in ad hoc
wireless networks,” Int. J. Network, vol. 30, pp. 3-30, 2001.

[16] L. Qin and T. Kunz, “Pro-active route maintenance in DSR,” ACM Mobile
Computing, Commun. Rev., vol. 6, no. 3, pp. 79-89, July 2002.

Protocols and Systems,

available at

[17] G. Aggelou and R. Tafazolli, “A Simulation analysis on reactive route re-
pair techniques for QoS sensitive applications in mobile ad hoc networks,”

in Proc. MobiHoc 2000, Boston, USA, Aug. 2000.

S. J. Lee and M. Gerla, “AODV-BR: Backup routing in ad hoc networks,”
in Proc. IEEE WCNC 2000, Sept. 2000, pp. 1311-1316.

[19] J. Li and P. Mohapatra, “LAKER: Location-aided knowledge extrac-
tion routing for mobile ad hoc networks,” in Proc. IEEE WCNC 2003,
Mar. 2003, pp. 1180-1184.

[20] L Stojmenovic, M. Russell, and B. Vukojevic, “Depth first search and loca-
tion based localized routing and QoS routing in wireless networks,” Com-
puters and Informatics, vol. 21, no. 2, pp. 149-165, 2002.

(18]

[21] 1. Stojmenovic, “Location updates for efficient routing in ad hoc wireless
networks,” in Handbook of Wireless Networks and Mobile Computing, Wi-
ley, 2002, pp. 451-471.

[22] I. Stojmenovic, “Position-based routing in ad hoc networks,” IEEE Com-
mun. Mag., pp. 2-8, July 2002.

[23] P.Bose, P. Morin, I. Stojmenovic, and J. Urrutia, “Routing with guaranteed
delivery in ad hoc wireless networks,” ACM Wireless Networks, vol. 6, no.
6, pp. 609616, Nov. 2001.

[24] 1. Stojmenovic, A. P. Ruhil, and D. K. Lobiyal, “Veronoi diagram and
convex hull based geocasting and routing in wireless networks,” in Proc.
1EEE Symp. Computers and Commun., Kemer-Antalya, Turkey, July 2003,
pp. 51-56.

Seungjin Park received the B.E. degree in civil en-
gineering from Hanyang University, Seoul, Korea, in
1981, the M.E. degree in civil engineering from Okla-
homa State University, Stillwater, Oklahoma, in 1983,
the M.S. degree in computer science from the Univer-
sity of Texas, Arlington, in-1988, and the Ph.D. de-
gree in computer science from Oregon State Univer-
sity, Corvallis, Oregon, in 1993. From 1994 to 1999,
Dr. Park was an Assistant Professor in the Department
of Computer Science at Kyonggi Univeristy, Suwon,
Korea. Since 1999, he is an Assistant Professor in the
Department of Computer Science at Michigan Tech. University. His research
interests are in the areas of mobile ad hoc networks and sensor networks.

Seong-Moo Yoo received the B.S. degree in eco-
nomics from Seoul National University, Seoul, Korea,
and the M.S. and Ph.D. degree in computer science
from the University of Texas at Arlington in 1989 and
1995, respectively. Since September 2001, he is an
associate professor in Electrical and Computer Engi-
neering Department of the University of Alabama in
Huntsville, Huntsville, Alabama, USA. From Septem-
ber 1996 to August 2001, he was an assistant professor
in Computer Science Department of Columbus State
University in Columbus, Georgia, USA. Dr. Yoo is the
conference chair of ACM Southeast Conference 2004, April, 2004, Huntsville,
Alabama, USA. He was the co-program chair of ISCA 16-th International Con-
ference on Parallel and Distributed Computing Systems (PDCS-2003), August
2003, Reno, Nevada, USA. Dr. Yoo’s research interests include wireless net-
works, parallel computer architecture, and computer network security. Dr. Yoo
is a senior member of IEEE and a member of ACM.

Mohammad Al-Shurman received the B.Sc. degree
in Electrical Engineering majoring in Computer Engi-
neering from Jordan University of Science and Tech-
nology (J.U.S.T.) in June 2000. He received his M.Sc.
degree in Computer Engineering from University of
Alabama in Huntsville (UAH) in August 2003. He is
a Ph.D. candidate in Electrical and Computer Engi-
neering Department, UAH. His major interests are
mobile ad hoc networks, mobile routing protocols, key
management, and network security.

Brian VanVoorst currently works as a principal re-
search scientist at Honeywell Labs in Minneapo-
lis, Minnesota. He has published in the areas of
MANETS, interprocessor communication in parallel
systems, distributed instrumentation systems, bench-
marking, and real-time and fault-tolerant computing.
Other areas of interest include sensor networks, active
tag RFID systems and highly available and depend-
able wireless datalinks. Before coming to Honeywell,
VanVoorst worked in the parallel tools group in the
NAS division at NASA Ames. He received his mas-
ter’s degree in computer science from Michigan Technological University in
1993 and in 2003 was awarded that school’s Outstanding Young Alumni Award.

Chang-Hyun Jo received his Ph.D. degree in com-
puter science from the Oklahoma State University, in
1991. Dr. Jo was an associate professor at Kyonggi
University, Korea, from 1991 to 1998. He was with
University of North Dakota as an associate professor
from 1998 to 2002. In 2002, he joined the Depart-
ment of Computer Science at California State Uni-
versity Fullerton, where he is currently an associate
professor. His research interests include mobile agent
computing, programming languages, software engi-
neering, ubiquitous computing, streaming technolo-
gies, networks and security.

