294 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005

A Scalable Explicit Multicast Protocol for MANETSs

Hrishikesh Gossain, Kumar Anand, Carlos Cordeiro, and Dharma P. Agrawal

Abstract: Group oriented multicast applications are becoming in-
creasingly popular in mobile ad hoc networks (MANETS). Due to
dynamic topology of MANETS, stateless multicast protocols are
finding increased acceptance since they do-not require mainte-
nance of state information at intermediate nodes. Recently, several
multicast schemes have been proposed which scale better with the
number of multicast sessions than traditional multicast strategies.
These schemes are also known as explicit multicast (Xcast; explicit
list of destinations in the packet header) or small group multicast

(SGM). In this paper, we propose a new scheme for small group’

multicast in MANETSs named extended explicit multicast (E2M),
which is implemented on top of Xcast and introduces mechanisms
to make it scalable with number of group members for a given mul-
ticast session. Unlike other schemes, E2M does not make any as-
sumptions related to network topology or node location. It is based
on the novel concept of dynamic selection of Xcast forwarders
(XFs) between a source and its potential destinations. The XF se-
lection is based on group membership and the processing overhead
involved in supporting the Xcast protocol at a given node. If the
number of members in a given session is small, E2M behaves just
like the basic Xcast scheme with no intermediate XFs. As group
membership increases, nodes may dynamically decide to become
an XF. This scheme, which can work with few E2M aware nodes in
the network, provides transparency of stateless multicast, reduces
header processing overhead, minimizes Xcast control traffic, and
makes Xcast scalable with the number of group members.

Index Terms: Explicit multicast, multicast, small group multicast,
wireless ad hoc networks.

1. INTRODUCTION

Multicasting [1] is the transmission of datagrams to a group of
hosts identified by a single destination address and hence is in-
tended for group-oriented computing. To support multicast in a
network, intermediate nodes need to maintain state information
for a given multicast session. This approach, when applied to
sparsely distributed groups, becomes extremely inefficient and
suffers from scalability problems. Recently, several multicast
schemes have been proposed which scale better with the number
of multicast sessions than traditional multicast schemes. These

Manuscript received January 3, 2004; approved for publication by Ekram Hos-
sain, Division Il Editor, February 6, 2005.

H. Gossain is with the Mesh Networks Product Group, Motorola, Inc., Mait-
land, FL. 32751, email: Hrishikesh.Gossain@motorola.com.

K. Anand is with Qualcomm, San Diego, CA, email: kanand@gqualcomm.
com.

C. Cordeiro is with the Wireless Communications and Networking De-
partment, Philips Research, Briarcliff Manor, NY 10510, USA, email: car-
los.cordeiro@philips.com.

D. P. Agrawal is with the OBR Center for Distributed and Mobile Computing,
Department of ECECS, University of Cincinnati, Cincinnati, OH 45221, email:
dpa@ececs.uc.edu.

An earlier version of this paper has appeared in ICC 2004 [2}. This paper con-
tains the complete description of E2M protocol and comprehensive simulation
results,

schemes are also known as explicit multicast (Xcast; explicit
list of destination in the packet header) or small group multicast
(SGM) [3], [4]. In Xcast, the multicast source includes the list of
all group members explicitly in the extended packet header and
assumes the underlying routing protocol to deliver the packet to
all the destinations. This approach is also known as stateless
multicast, since none of the intermediate routers need to main-
tain any state information related to any ongoing session.

In this paper, we have considered the problem of providing
SGM in a mobile ad hoc network (MANET). A MANET is
an infrastructure-less, dynamically reconfigurable wireless net-
work, wherein the mobility of any node results in rapid and un-
predictable changes in network topology. As a result, the issues
related to multicast routing in MANETS prove to be different
and harder to address than those in fixed wired networks [5].
There is a plethora of work to provide traditional multicast in
MANETSs. A recent survey of multicast routing protocols for
MANETS can be found in [3] and a performance comparison of
some of these protocols has been discussed in {6]. These proto-
cols (e.g., [7]-{10]) follow the traditional multicast approaches
meant for wired networks, i.e., they maintain multicast state in-
formation in each and every node for a given session, and hence
have limited scalability with number of different multicast ses-
sions.

In a MANET, due to node movement and frequent changes
in network topology, it is difficult to maintain correct multicast
state information. Hence, there is a recent trend towards design-
ing stateless muiticast routing schemes wherein an intermediate
node (which also serves as a router hiere) need not maintain any
state information. Generally, these schemes are meant for small
groups and some of the examples include differential destina-
tion multicast (DDM) [11], location guided tree (LGT) [12], and
route driven gossip (RDG) [13].

There are some proposals to enhance the basic Xcast scheme
and make it scalable with number of users and reduce the over-
head involved in processing the Xcast header at intermediate
nodes [4], [14]. However, these proposals have been fine-tuned
for wired network and are not suitable for MANETS. In this
paper, with similar objectives we propose a new scheme for
MANETS, named extended explicit multicast (E2M), which is
built on top of Xcast and introduces novel schemes to make it
scalable with the number of group members. E2ZM employs the
concept of Xcast forwarder (XF), but unlike other schemes de-
signed for wired networks, the selection of XF is dynamic and
among other things, depends on the number of group members.
E2M does not make any assumptions related to network topol-
ogy or node location, which is important given the rapid and
unpredictable change in MANET topology due to node move-
ment. In short, E2M provides the transparency of Xcast, reduces
header processing overhead at intermediate nodes, minimizes
contro] traffic, and makes Xcast scalable with number of group
members in a given multicast session.

1229-2370/05/$10.00 (© 2005 KICS

GOSSAIN eral.: A SCALABLE EXPLICIT MULTICAST PROTOCOL FOR MANETS

The outline of rest of the paper is as follows. In Section II,
we first provide an overview of Xcast, followed by a discussion
of some of the related existing Xcast schemes in Section IIL
Section IV describes the proposed E2M protocol while in Sec-
tion V we compare the performance of E2M with other existing
schemes. Section VI describes how E2M can be extended for IP
network, and in Section VII some of the routing and medium ac-
cess control (MAC) layer issues related to implementing Xcast
in MANETS are discussed. Finally, Section VIII concludes the

paper.

II. XCAST IN MANETS

Xcast [3], [4] is source-based multicast scheme wherein the
multicast source explicitly puts the list of destination addresses
in the extended packet header, and assumes that the underlying
routing protocol will deliver the packet to all of its destinations
(for example, the option header in IPv4 can be used to put the
list of destinations for an Xcast packet). In a wired network, if
a source wants to send an Xcast packet, it will group the list of
destination addresses according to their next hop and then re-
peatedly unicast the multicast packet to each of these next hops
with the list of their respective destination addresses. When a
next hop node receives a packet, it extracts the destination list
meant for it and employs a similar approach as the source to
forward the packet. Fig. 1 illustrates this basic Xcast scheme in
detail. Here, node A is the source of an Xcast session and nodes
B, C, D, E, F, and G are the prospective recipients. Thus, the ex-
tended header at the source node A will have N1: B, C, D, E, F,
G where N1 is the next hop (downstream) node. Upon receiving
the packet, node N1 determines that node N2 is the next hop for
all the destinations contained in the packet header and modifies
the extended header as N2: B, C, D, E, F, G. When node N2
receives this packet, it regroups the list of destinations based on
next hops, namely, nodes N3 and N4. In the case of Fig. 1, node
N2 modifies the extended header to be N3: B, C; N4: D,E, F, G.
Subsequent nodes follow similar steps until the packet reaches
all the destinations.

There are some schemes which extend this idea of Xcast for
MANETSs. For example, DDM uses an extended header to in-
clude the list of destinations and their next hop. Source node
encodes the entire next hop list and the corresponding destina-
tion IPs in the packet header and broadcasts the Xcast packet to
all its neighbors. All nodes in the neighborhood who receive it
process the extended header to check if they are present in the
next hop list.

Some points about basic Xcast scheme in MANETSs are worth
noticing here. First of all, all the nodes in the neighborhood who
receive an Xcast packet need to process the extended header to
check if they are present in the next hop list. This is a major
overhead both in terms of processing and delay associated with
forwarding an Xcast packet. The other option is to separately
send the Xcast packet to each next hop as in a wired network,
but this scheme does not utilize the broadcasting property of
wireless links and results in duplicate transmissions of the same
packet. Besides, maintaining the entire Xcast group member-
ship at the source may create its own problem. For example, if
members send periodic membership update to the source, it may

®
/ ®
C

NG
@@

{N1:B,C,D,E, F, G} e
{N7:D,E,F;

l POROCET
() —)—) |
T@ ©

{N3:B,C;
N4:D, E, F, G}

Fig. 1. Xcast packet delivery.

result into a “join implosion” problem at.the source, even for a
moderate size Xcast session.

III. RELATED WORK

As discussed above, the self-routing nature of the Xcast
scheme eliminates the need to maintain any state information
at intermediate nodes, and hence makes it a suitable choice for
small groups. Because of these features, there is a recent shift
towards stateless multicasting in MANETS and this is reflected
by protocols such as DDM [11], LGT [12], and RDG [13].

LGT is a small group multicast scheme based on packet en-
capsulation. It builds an overlay multicast packet distribution
tree on top of the underlying unicast routing protocol. Multi-
cast data is encapsulated in a unicast packet and transmitted only
amongst the group nodes. One of the assumptions LGT makes is
that every member of the multicast group is aware of other mem-
bers of the group. Also, each node is aware of its own geomet-
ric location as well as the location information of all the other
members in the group. On the other hand, RDG uses a proba-
bilistically controlled flooding technique, termed as gossiping,
to deliver packets to all group members. In DDM, the source
encodes multicast receiver addresses in multicast data packets
using a special DDM Data Header. This variable length desti-
nation list is placed in the packet headers, resulting in packets
being self-routed towards the destinations using the underlying
unicast routing protocol. It eliminates maintaining per-session
multicast forwarding states at intermediate nodes and is thus
scalable with respect to the number of sessions.

It is worthwhile to note that though the development of Xcast
schemes as a stateless multicast protocol is intended for small
groups, the size of a “small group” is still not well defined. For
example, if the number of destinations which map to same next
hop is more than 9, and assuming Xcast protocol uses the option
header in IPv4, a source can include at most 9 destinations in the
packet header [4], and will have to perform multiple transmis-
sions of the same packet so as to reach more than 9 destinations.

When the group size is moderate or large, placing the ad-
dresses of all the members into the packet header turns out to be
extremely inefficient. Although protocols such as DDM offer a
caching mode wherein only the difference between the previous
headers is kept in the packet header, the support of caching in
each and every intermediate node is a tough task in MANETSs
where nodes can move arbitrarily. In addition, DDM requires
every node (router) in the network to cooperate. The proposed

296 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL.. 7, NO. 3, SEPTEMBER 2005

E2M protocol is designed keeping these constraints in mind,
while at the same time making the Xcast scheme more scalable
with number of group members, and incurring lower network
overhead.

IV. THE PROPOSED E2M PROTOCOL

A. Overview of Proposed Approach

The E2M protocol aims to overcome the limitations in the
existing Xcast schemes for MANETS by utilizing a new com-
bination of adaptive mechanisms. E2M employs Xcast for-
warders (XFs) as hierarchical forwarders, which are selected
dynamically during the message forwarding procedure. Simi-
lar schemes to tackle the overhead involved in supporting Xcast
have been proposed for wired network [4], [14], wherein an edge
router, also known as designated router (DR), joins the Xcast
session after receiving a join message from one of its down-
stream members. In this case, even if the DR serves more than
one member, the source needs to put only the address of the DR
in the list of destinations. This approach considerably reduces
the Xcast packet header size and the overhead involved in pro-
cessing the packet at intermediate nodes.

When applied to MANETS, these schemes are observed to
create significant problems. In wired networks, members are
typically located at the network edge which makes it relatively
simple to locate an edge router and designate it as DR. How-
ever in a MANET, since member nodes can be located anywhere
(not necessarily at the edge) and each node serves as a router as
well, the task of selecting a DR becomes difficult. Besides, as
the source has no knowledge of the members served by a DR,
movement of a DR will very likely result in disruption of packet
delivery to all group members served by this DR. Also, due to
frequent change in network topology, it is hard to select a well-
defined DR.

The proposed E2M protocol is designed by taking mobility
into consideration and is particularly suited for MANETs. To
explain the difference between E2M and the aforementioned
schemes, please refer to Fig. 2. In E2M, the multicast source
node A puts [N1: B, C, N6], while the list would be [N1: N3,
N7, N8] for the schemes in [4], [14]. In Fig. 2 and for the case
of E2M, only node N6 needs to be a XF as the number of nodes
served by it is greater than a threshold (in this case, 3). The se-
lection of XF is dynamic, helps in reducing the packet header
size and reduces the processing overhead and delay. Another
important advantage of E2M is that it minimizes the MEM-
BER_JOIN implosion problem at the source. In the basic Xcast
scheme, the source node will be flooded with MEMBER_JOIN
messages at periodic intervals due to member nodes trying to
update their session membership. However, in E2M a XF com-
bines all the MEMBER_JOIN messages it receives form its
downstream member nodes and sends a single XF_JOIN mes-
sage to the source. This reduces the control traffic overhead and
also addresses the problem of “join implosion” at the source.
E2M can work with only a few intermediate nodes which are
E2M aware. In the following subsections we describe the E2M
protocol in detail.

{N7:D,E,F;
N8: G}

©
{N1:B, C, N6}

@@ W

®—©® @ \®
oo
”\0%)

Fig. 2. E2M packet delivery.

{N3: B G
N4: N6}

B. Membership Management

Membership management in E2M is similar to the basic Xcast
scheme. A source works as an admission controller and plays
an important role in the membership management. The proto-
col proceeds independently for each source sending data to an
Xcast session. E2M employs two types of packets: Control and
data. Data packet is an Xcast packet with extended header. The
extended header in the Xcast packet includes the list of desti-
nations (members who do not belong to a XF) and the list of
current XFs (Xcast forwarders). There are four types of control
packets: MEMBER_JOIN, MEMBER_ACK, XF_JOIN, and
XF_ACK.

If a node is interested in joining a particular Xcast session,
it unicasts MEMBERS_JOIN message to the source of the ses-
sion. The format of MEMBER_JOIN is as follows.

<sessionSource, sessionlD, joinerID>

Underlying assumption here is that the node knows the session
ID and the ID of the source. Also, the sessionSource and ses-
sionID uniquely identify an Xcast session. The source, upon re-
ceiving a MEMBER_JOIN message, performs necessary checks
to see if the member can join the multicast session. If the
joiner passes the admission requirements, the source adds it to
session membership table (SMT) and acknowledges the MEM-
BER_JOIN message by unicasting a MEMBER_ACK message
to the joiner. The admission policies are beyond the scope of
this paper.

A joiner after sending a MEMBER_JOIN message waits for
JOIN_WAITING_PERIOD to receive a MEMBER_ACK from
the source. If it does not receive a MEMBER_ACK during this
period, it resends the MEMBER_JOIN message till a MEM-
BER_ACK is received or MAX_MEMEBER_JOIN_RETRY
join messages have been sent, after which it concludes that the
source is unreachable.

Due to dynamic nature of MANETS, node reachability may
change unpredictably. Hence, the source needs to update its
SMT from time to time. In E2M, the primary membership up-
date mechanism is source initiated. Source initiated member-
ship update is preferred over receiver initiated update because
it eliminates synchronization issues [11]. Nodes could be join-
ing the session on an ad-hoc basis at ditferent time intervals.
In order to send periodic refresh messages to the source they
will have to synchronize their clock with the source if update
1s receiver initiated. However, if the update is source initi-
ated, they do not have to keep track of when they should be

GOSSAIN et al.: ASCALABLE EXPLICIT MULTICAST PROTOCOL FOR MANETS

sending their membership refresh message. Once every MEM-
BER_REFRESH_PERIOD, the source sets a POLL flag in the
next outgoing Xcast data packet. Upon receiving such a data
packet, all members need to send a MEMBER_JOIN message
to the source and update their membership. If a source does
not receive an update from any particular member, it marks the
member inactive but does not remove it from the SMT. This is
because the source has no knowledge to determine if the Xcast
packet (with the set POLL flag) reached the member node, or
if corresponding MEMBER_JOIN update itself was lost due to
collision. Through our simulation work, we observed the oc-
currence of packet losses very frequently. Hence, after miss-
ing an update message from a member, the source waits for
MAX_UPDATE_MISS times before deleting the member from
the SMT. In addition, if a node detects its movement by miss-
ing MAX_SEQUENCE_GAP number of Xcast packets; it sends
a MEMBER_JOIN message again to the source (Section VII).
This is our secondary way of membership update. This helps the
source to update its SMT, as well as the route to this member.

The initial packet forwarding in E2M works similar to the
Xcast scheme by encoding the list of all possible destinations
in the extended Xcast packet header. A XF_JOIN message is
sent only when a node decides to become an XF for the ongoing
Xcast session. XF_ACK is sent from the source in response
to XF_JOIN, and confirms the originator of XF_JOIN that it
has been added as a XF at the source. Following subsection
will elaborate more on these two messages and the XF selection
procedure.

C. XF Selection and Removal

Once a node starts receiving Xcast session packets, depend-
ing on the number of destinations it is serving and overhead in-
volved in processing the Xcast header, it may decide to become
an XF for its downstream group members. In the present ver-
sion of E2M, we have used the number of destination IDs in
the received Xcast packet header and the corresponding num-
ber of next hop branches to decide if a node should become an
XE. If the number of destination IDs is more than a threshold
(for example, it may be 9 if destination IDs are encoded in the
options field of IPv4, so as to prevent multiple transmission of

same packet) and if the node is a branching point it may decide .

to become an XF. If an intermediate node X decides to become
an XF for a particular session, before sending a XF_JOIN mes-
sage to the source it performs two more operations. First, to pre-
vent multiple nodes trying to send XF_JOIN towards the source,
each prospective XF sends the join message only after a specific
delay whose duration is given by
o T=(ESTIMATED_NETWORK_RTT)/(HOP_DISTANCE),
o ESTIMATED _NETWORK_RTT = estimated round trip
time of a packet to traverse the network width,
¢ HOP_DISTANCE = number of hops the node is away from
the source of the session.
This delay partially ensures that XF_JOIN messages from
downstream nodes will reach the session source before an-
other upstream node along the same path tries to send another
XF_JOIN. If an upstream node receives an XF_JOIN from any
of its downstream nodes, it simply aborts its attempt to become
an XF. Secondly, before sending a XF_JOIN, a node also en-

297

sures that it has received SEQ_GAP consecutive Xcast packets
in which it is eligible to become an XF. In case of considerable
changes in the downstream destination list during this interval,
the node concludes that the network is too dynamic and aborts
its attempt to become an XF for its downstream members. This
will happen frequently in case node mobility is very high. As
suggested in [11], in such scenarios, the ideal way to support
Xcast is through flooding. i

In case both the above criteria are satisfied, the node sends a
XF_JOIN to the source which contains the present list of des-
tination members it can serve. The format of XF_JOIN is as
follows.

<sessionSource, sessionlD, xfID, destination_list, incr_list,
decr_list, path_list>

XF_JOIN message sent by a node X for the first time con-
tains only the list of destination members (encoded in destina-
tion_list) and the incr_list and decr_list are both initialized to
NULL. As the XF_JOIN message is forwarded to the session
source, each intermediate node appends its ID to the path_list.
The path_list thus records the complete route from the XF to the
source. After receiving a XF_JOIN from a node X, the source
checks to see if there is a XF present in the recorded path_list.
If not, the source updates its Xcast forwarding table (XFT) by
inserting the node X and the corresponding list of destinations
served by node X (Fig. 3), and sends a XF_ACK to node X.
From this point onwards, the source only specifies node X in
its extended packet header instead of putting all the correspond-
ing group members served by node X. From now on, extended
header of all Xcast packets sent by the source will have the ID
of the new XF in the list of XFs, and serves as an implicit ‘ac-
knowledgement of previous XF_JOIN message sent from node
X.

In the present version of E2M, to keep things simple and avoid
formation of hierarchy of XFs along a path, a node before send-
ing a XF_JOIN also checks if there are no XFs already present
in the destination list passing through it. This is possible since
each Xcast data packet also contains the Xcast forwarder along
this path. A check for the presence of XF ensures that there is
no XF already present in the downstream path. The likelihood
of such a scenario occurring though is minimal, because if a XF
is already present in the downward path, the list of destinations
passing through this node will likely be small, and this node will
not meet the criteria for becoming a XF.

Similar to MEMBER_JOIN message used by session mem-
bers to update their membership at the source, node X also
takes care of sending periodic XF_JOIN refresh messages to the
source so as to notify any change in the membership of its down-
stream destinations. Any change in the membership is conveyed
through incr_list and decr_list. Through incr_list, node X tells
the source about new members which are interested in the group
or have just moved in under this XF, whereas decr_list is used
to inform the source about the members which are no longer
interested in the session or have moved out of this XF.

XFs also take care of handling the MEMBER_JOIN for their
downstream members. As already mentioned, membership up-
date is initiated by the session source. All members send a
MEMBER_JOIN message to the session source when they re-
ceive an Xcast packet with the POLL flag set. When a XF re-

298 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005

W
- \ 4,

2
@ {To destination} CK

{To destination}

(a)

To destination}

{To destination}
(b)
Fig. 3. XF-selection: (a) XF_JOIN propagation, (b) N3 and N5 as XF.

ceives a MEMBER_JOIN message from its downstream node,
instead of forwarding it to the source, it updates its membership
table. If the member does not belong to it, it adds the member
to the incr_list. If it does not receive a MEMBER_JOIN from
any of the members it is already serving, it adds the node to the
decr_list assuming member has either moved out of this XF or
is no longer part of the session. As a result, the source node gets
only a single XF_JOIN for all the members currently served by
a given XF, and also for all the members who do not belong to
this XF but have moved under this XF due to their mobility. The
source node, on receiving a refresh XF_JOIN, adds all the IDs
in incr_list to the list of destinations being served by this XF.
The list of destination IDs present in decr_list are removed from
those being served by this XF and will be encoded explicitly in
the packet header thereafter. However, if a node in the decr_list
moved under another XF, it will be present in the incr_list of
the new XF. The source will, accordingly, update the XFT and
subsequently the new XF will take care of forwarding the Xcast
packet to this node. It is to be noted that if a node no longer
wants to serve as an XF, it simply needs to stop sending periodic
XF_JOIN message to the source.

On the other hand, if the source discovers that there is a XF
already present in the recorded path_list of the XF_JOIN mes-
sage, it removes this XF from the list of Xcast forwarders. This
is done not only to ensure that there is no hierarchy of XF’s,
but is also based on the assumption that the node which sent the
new join message is more suitable to become a XF since it is lo-
cated at greater hop distance from the source. XF removal at the
source is therefore dynamic and is triggered if a new node along
the same path and located at greater hop distance tries to become
a XF. To remove a XF, the session source starts by putting the
destination IDs of all the members served by this XF in regular

Procedure RECEIVE_MESSAGE_AT_SOURCE ()
Input: Mpkt // received packet
Begin
If (MPkt->type == MEMBER_JOIN) Then
If isNewMemberJoin(MPkt->source) Then
Insert (MPkt->source) in SMT //new member has joined the session
Elseif !isNewMemberJoin(MPkt->source) Then
Update (MPkt->source) in SMT and XFT //received a member refresh
Endif
Elseif (Mpkt->type == XF_JOIN) Then
If isNewXFJoin(Mpkt->source) Then
1f isXFPresentInPathList(Mpkt->path_list) Then
removeXF (Mpkt->path_list->XFId)
updateXFT(Mpkt->Source, NextHop, NumHops, Dest-List)
Else //No XF is present in the path list
updateXFT(Mpkt->Source, NextHop, NumHops, Dest-List)
Endif
Else //this XF is already there
update(Mpkt->source) in XFT and SMT
Endif
Endif
FreePacket(Mpkt)
End

Fig. 4. Message handling at the source.

Xcast packet and removes its entry from the XFT. From now on
the Xcast data packets will not contain the ID of the removed
XF in the XF header along the path. The removed XF, on re-
ceiving such an Xcast data packet, will know that it has been
removed as a XF. It will then clear its local membership table
and will thereafter forward Xcast packets simply based on the
destinations encoded in the extended packet header. Please refer
to Fig. 4 for the algorithm to select an XF at a source.

D. Packet Forwarding

In E2M, packet forwarding at any node is based on destina-
tion list received and whether the node is serving as an XF or is
just a simple next hop node. Each Xcast packet is built with a
payload and list of destinations grouped according to their next
hops. The destination list explicitly specifies the node IDs (not
under any XF) who should receive this Xcast packet and also in-
cludes the list of XFs along that path. When a node receives an
Xcast data packet from an upstream neighbor, it first tries to lo-
cate its own destination list by looking at the next hop block. If
no such block is present, the packet is simply discarded and for-
ward processing stops (please refer to Fig. 5). After finding its
own next hop block, the receiving node compares the sequence
number of the data packet with its own local copy of the se-
quence number in its cache for this Xcast session. If this packet
has been forwarded before, the message is discarded.

In case this is a new packet, the node checks if it is presently
serving as a XF. If not, it checks if it should try to become a XF
for the session. On finding itself eligible to become a XF (refer
to Section IV-B), it creates a XF_JOIN message with the list of
destination IDs in its member list, and sends it to the source of
the session with incr_list and decr_list set to NULL. Till the time
it receives an explicit XF_ACK from the source or receives an
Xcast packet with its ID present in the XF list (implicit ACK),
the node keeps on forwarding Xcast packets like a simple Xcast
forwarding node. The node declares itself XF and activates its
member list only when it receives an XF_ACK (explicit or im-
plicit) from the source.

XF_JOIN messages might be lost due to packet colli-

GOSSAIN et al.: A SCALABLE EXPLICIT MULTICAST PROTOCOL FOR MANETS

Procedure RECEIVE_PACKET ()
Input: MPkt //received Packet
Begin
If (MPkt->type == XCAST_DATA) Then
If isInNextHopList(Mpkt) Then
If (Mpkt->seq_no > Cache->seq_no) Then //received a new packet
UpdateCachePktSequence(MPkt->seq_no)
If lisXF(Mpkt->sessionlD)
If isXFSendEligible(Mpkt) Then
sendXFJoin(Mpkt->source, dst_list)
// Start a timer to resend the XF_JOIN if XF_ACK not received
Endif
Endif
If isXF(Mpkt->SessionID) Then
XF-DST-LIST = getMemberListofDst(SessioniD)
Mpkt-> Dst-list = Aggregate (XF-DST-LIST, Mpkt->Dst-list)
Endif
If isSetPOLL(Mpkt) Then
If isMember() Then
sendMemberJoin{Mpkt->source)
Elseif isXF(Mpkt->SessionID)
//start a timer to receive MEMBER_JOIN from downstream nodes
Endif
Endif
getNextHop(Mpkt->Dst-List)
Sort-Dst(NextHop, Mpkt->Dst-List)
forward (MPkt)
Endif
Endif
Endif
If (MPkt->type == MEMBER_JOIN) Then
If isXF(MPkt->sessionlD) Then
If isilnMemberTable(Mpkt->senderID) Then
updateMemberTable(Mpkt->senderID)
Else
addNodeTolncrList(Mpkt->incr_list)
Endif
Else
forward (Mpkt)
Endif
Endif
If (MPkt->type == XF_JOIN) Then
If isSource(Mpkt->sessionID) Then
RECEIVE_MESSAGE_AT_SOURCE(Mpkt)
Else
forward (Mpkt)
Endif
Endif
FreePacket(Mpkt)
End

Fig. 5. Message handling at an intermediate node/XF.

sion at MAC layer and therefore, if the node does not re-
ceive an XF_ACK, it resends the XF_JOIN to the source till
MAX_XF JOIN_RETRY is reached, after which it concludes
that either source is no longer reachable or the source has al-
ready designated another node as a XF along this path. In the
latter case, this node should stop resending XF_JOIN.

In case the node is already an XF, it extracts the list of mem-
bers currently served by it and adds them to the list of desti-
nations already encoded in the extended packet header of the
received Xcast packet. Then, it regroups the IDs according to
their next hops and forwards the packet.

E. Data Structures

It is important to mention the data structures involved in im-
plementing the E2M protocol, especially at the source node and
at the XF. For a given session, a source maintains following ta-
bles.

o SMT (session membership table): Maintains the current

299

membership for a given session.

o SFT (session forwarding table): Maps destinations to their
next hop. Nodes with the same next hop are grouped to-
gether.

o XFT: A set of nodes working as a XF for the multicast group
and their associated downstream session members.

A source node maintains a SMT for each multicast session
it is working as a source. The XFT stores, for a given session,
the mapping of XFs to their corresponding list of destination
addresses. Also, SFT maps destination nodes to their respective
next hops. The SFT is further divided into smaller subsets which
groups the set of destinations whose next hop is the same. If an
intermediate node wants to serve as a XF, it needs to maintain
both a SMT and a SFT. As mentioned earlier in our discussion,
a XF need not maintain a XFT if we assume group membership
not to be very large.

F. Handling Node Movement

MANET is a dynamically reconfigurable wireless network
where nodes are mobile resulting in variable network topology.
Thus, the Xcast delivery in MANETS is far more challenging
than its wired counter part. Fine-tuned for wired networks, the
basic Xcast scheme seems to be immune to change in network
topology by having the source node explicitly mention the list of
destinations in the extended header, while the routing protocol
is responsible to deliver the packets to the required destinations.
There may be issues regarding packet delivery in MANETs and
an interesting scenario comes into picture when the XF or one
of its members moves out. Movement of a member node that
does not belong to any XF is handled by the underlying routing
protocol, since the ID of this node would always be explicitly
encoded in the packet header.

In case of XF movement, as soon as the source comes to
know about it (e.g., route error packet generation in AODV and
DSR, or the neighbor discovery phase through hello packets),
the source node obtains the list of destinations served by this
XF from its XFT and includes this list of destinations explic-
itly in its extended packet header for all Xcast packets there-
after. The source node also removes the corresponding XF entry
from it XFT. The movement of a member node is also transpar-
ent and is handled through MEMBER_JOIN message sent to the
source. For example, if a node X moves to a new point of attach-
ment where it has a different path to the source than its previous
path, its periodic MEMBER_JOIN will either directly reach the
source or will pass through an existing XF in that area. If the
source receives this join message directly, it adds the address
of node X in subsequent extended packet headers explicitly and
also updates the XFT accordingly. As for the old XF of node X,
it will come to know about node X’s movement when it fails to
receive node X'’s periodic MEMBER_JOIN. As a consequence,
in the next XF_JOIN to the source, the XF will mention this
in its decr_list in its packet. However, it may also happen that
MEMBER_JOIN message from node X passes through any of
the serving XF. In such a scenario, the new XF will add the node
to its local SMT and then update the session source about this
change through its XF_JOIN incr_list.

300 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005

V. PERFORMANCE EVALUATION

A. Simulation Environment

We have implemented Xcast module in NS (version 2.26)
[15]. The simulation environment models a MANET comprised
of 75 mobile nodes. We have simulated Xcast session for group
membership size of 10, 20, 30, 40, and 50 nodes. At the be-
ginning of simulation, 75 nodes are randomly placed in a grid
of size 1000 m by 1000 m. When the simulation starts, each
node randomly picks a destination and moves towards it with a
random constant speed ranging from 2 m/s to 10 m/s. We vary
the mobility with different pause times as 0, 150, 300, 400, and
500 seconds. After a node reaches its destination, it randomly
picks another destination and starts moving towards this new di-
rection with a newly selected random speed. The network stack
of each mobile node consists of link layer, an ARP module, in-
terface priority queue, IEEE 802.11 MAC layer with 250 meters
transmission range, and a network interface. Table 1 outlines
different simulation parameters used in the simulation. For ra-
dio propagation model, our simulation uses free space model for
distance less than cross-over distance [15] (also known as Fres-
nel Breakpoint). For distance larger than cross over distance,
simulation uses two ray ground propagation model. In NS, the
value of cross-over distance is approximately 80 meters.

For the simulations that follow, we have considered CBR traf-
fic with payload size set to 512 bytes. Data packets are generated
at the source at a rate of 2 packets per second. Each simulation
runs for 500 seconds and all results are averaged over 10 dif-
ferent seeds. There is no network partition during the course of
simulation. We have compared the performance of E2M with
basic DDM (with no caching mode) scheme and flooding. Our
simulation is basically divided into two groups. In the first group
of simulations, we vary the group size with no mobility, whereas
in the second group of simulation we keep group size fixed to 40
nodes and vary the node mobility. This is done to clearly iden-
tify the impact of changing group size and mobility on different
protocols.

B. Protocols

Both E2M and DDM run over the MANET unicast routing
protocol AODV (ad hoc on-demand distance vector) [16]. NS
already provides the AODV routing agent, while we had to mod-
ify the AODV agent to support Xcast over it. However, it should
be noted that the E2M is independent of underlying routing pro-
tocol and it can run over any of MANET routing protocols. Only
reason of choosing AODV is its ease of implementation in NS,
To facilitate the interaction between the Xcast agent and the
AODYV agent, we have adopted a cross-layer design approach,
wherein an Xcast agent can access the AODV routing table to
group the nodes which are reachable through the same next hop.
In case a route is not available, the Xcast agent simply sends
a unicast packet to the AODV agent, which triggers a route re-
quest for this destination. When the AODV agent receives a
route reply from the required destination, it updates its route ta-
ble accordingly. An Xcast agent can now directly obtain the next
hop information from the routing layer.

Table 1 outlines some of the AODV parameters selected for
our simulation work. We have enabled the gratuitous mode of

Table 1. Simulation parameters.

Parameters Value
Number of nodes 75
Simulation | Packet size 512 bytes
Simulation time 500 s
X-dimension of motion 1000 m
Y-dimension of motion 1000 m
Transmission range 250 m
Bandwidth 1 Mbps
Node placement Random
Radio propagation model TwoRayGround
MAC protocol TEEE 802.11
-Transport protocol CBR
MEMBER_JOIN_RATE 50s
XCAST XF_JOIN_RATE ° 50s
XF_SELECTION_THRESH 9
MAX_XF_JOIN_RETRY 3
MAX_UPDATE_MISS 3
MAX_SEQUENCE_GAP 3
ESTIMATED_NETWORK_RTT | 2s
ACTIVE_ROUTE_TIMEOUT 10s
AODV HELLO_INTERVAL Is
GRATUITOUS MODE ON

AODV. This is because in AODV when a node receives a route
request and responds with a route reply, it does not forward
the route request any further. If all route requests generated by
the source are replied to by intermediate nodes, the destination
member does not receive any copies of the route request. Hence,
it does not learn of a route to the source node. This may create
problem for the case when a member node is trying to send a
periodic MEMBERSHIP_JOIN update towards the source, and
it may force a member to do a route request for the source. By
enabling gratuitous mode, intermediate nodes after receiving a
route request and responding with a route reply (incase it has a
route), also unicasts a gratuitous route reply to the destination
member. This helps in reducing the route request generated by
different session members.

C. Performance Metrics

The following metrics are used to compare the performance
of different schemes.

o Average Xcast packet header size: Average size of the Xcast
packet header needed to include the list of all destinations.
This metric does not include payload size.

o Data packet delivery ratio: Ratio of the number of data pack-
ets actually received by group members to the number of
data packets which should have been received.

¢ Xcast routing protocol overhead: It includes

— relative control message overhead: Control overhead in-
volved in supporting different Xcast schemes,

— relative control byte overhead: Control byte overhead in-
volved in supporting Xcast. This includes both the Xcast
header as well as Xcast control message overhead.

o Forwarding efficiency: This is a measure of the number of
data packets transmitted per data packet delivered.

e Member refresh overhead at source: Ratio of the number of
join refresh messages received at the sources to the number
of Xcast packets transmitted by it.

GOSSAIN et al.: A SCALABLE EXPLICIT MULTICAST PROTOCOL FOR MANETS

D. Simulation Results
D.1 Average Xcast Packet Header Size

One of the main points of interest of our simulation work was
to calculate the average Xcast packet header size transmitted
in the network. It refers to the extended header needed to ex-
plicitly encode the address (4 bytes each) of group members in
the Xcast packet. The significance of this result is that as the
value of header size increases, there is higher number of desti-
nation IDs mentioned in the Xcast packet, which increases the
time needed to pfocess the packet at intermediate nodes. Fig. 6
compares the average packet header size (in bytes) for E2M and
DDM schemes. For small group size, E2M behaves similar to
DDM scheme since there are no XFs selected. As the group size
increases (Fig. 6(a)), average Xcast packet header size increases
for both DDM and E2M. However, in E2M, the selection of XF
helps in reducing the list of destinations IDs needed to be put
in the extended header and hence it outperforms DDM. Inter-
estingly, with the introduction of mobility, the average packet
size for both E2ZM and DDM goes down (Fig. 6(b)). This is be-
cause of increased number of miss of membership update from
the member nodes due to node movement, which makes source
to put less number of destinations in the packet header. But in
this case also E2M outperforms DDM. For Flooding, the size of
Xcast extended header is always zero.

D.2 Data Packet Delivery Ratio

From Fig. 7(a), we can see that the packet delivery ratio of
flooding is good for both varying group size as well as mobility.
This is because of the redundant packet transmission involved in
flooding. The packet delivery ratio for EZM and DDM is com-
parable to flooding in Fig. 7(a), but the delivery ratio decreases
rapidly with the increase in node mobility (Fig. 7(b)). There are
several factors which contribute to the poor performance of ba-
sic DDM and E2M when mobility is introduced. Some of them
include packet collision at MAC layer, since packets are trans-
mitted without RTS/CTS and increased routing overhead due to
changing network topology. We have elaborated more on these
issues in Section VII. However, it is worthwhile to note that, as
compared DDM, E2M has a comparable packet delivery ratio
even with reduced extended header.

D.3 Xcast Routing Protocol Overhead

We have studied the Xcast routing protocol overhead involved
in supporting Xcast. It is to be noted that this is the pure control
traffic generated by an Xcast agent, and we have not considered
the control overhead introduced because of the routing layer.
This study is performed in two perspectives, control packet over-
head which is the control packets generated by an Xcast layer
to maintain the group membership (MEMBER_JOIN, MEM-
BER_ACK, XF_JOIN, XF_ACK), and control byte overhead
which, in addition to above messages, also includes the num-
ber of bytes used to mention the list of destinations.

Although both of the above metrics contribute to the network
overhead, the former is especially significant since the cost of
accessing wireless link is very high. For flooding, the control
message overhead is clearly zero.

301

40 T T T T

35 ¢ _

Average number of destinations

10 + "
E2M ——
5T DDM-Basic -]
0 B) .) _FLOODING e
10 15 20 25 30 35 40 45 50
Group size
(@)
45 : . — ,
40 B
35 F

E2M ——

Average number of destinations

51 DDM-Basic - |
0 . B _FLOODING —x----
0 100 200 300 400 500
Pause time

(d)

Fig. 6. Average Xcast packet header size for group size and pause time:
(a) Varying group size, (b) varying pause time.

o Xcast control packet overhead: It is defined as the ratio of
number of control packets transmitted to the number of data
packets sent from the source. For DDM, it includes MEM-
BER_JOIN and MEMBER_ACK packets, whereas for E2M
it includes MEMBER_JOIN, MEMBER_ACK, XF_JOIN,
and XF_ACK. These join refresh messages are sent peri-
odically at MEMBER_JOIN_RATE and XF_JOIN_RATE.
These are pure control packets and do not carry any user
payload. Fig. 8 gives the control packet overhead associated
with each of the Xcast schemes. In DDM, the membership
update messages are sent at periodic interval of time to the
source. This messages travel all the way to the source. On
the other hand, in E2M, some of the periodic membership
update messages are handled by XF itself and hence the to-
tal number of control traffic injected into the network goes
down.

o Xcast control byte overhead: Another interesting metric to
compare the performance of the Xcast schemes is to analyze
the control bytes transmitted by each of them. This includes
the bytes of control packets, and embedded contro! informa-
tion in data packets. Fig. 9 gives the ratio of control bytes
transmitted to the number of data bytes sent from the source.
As before, flooding does not have any control information.
On the other hand, the majority of control bytes in DDM and

302
1 e —— Rm— AT [I U . Mo
08 _
2
IS
= 06 —
v
2
9
o
E 04 - _
o
©
a
02 | E2M ——
DDM-Basic -
oL . . FLOODING -r-
10 15 20 25 30 35 40 45 50
Group size
(a)
1] ' _ e
L
g
o
v
=
K]
T
[
v
[
T
[~ %
E2M ——
DDM-Basic ----x-----
0 . ‘ FLOODING --»--
0 100 200 300 400 500
Pause time
(b)

Fig. 7. Average Xcast packet header size for group size and pause time:
(a) Varying group size, (b) varying pause time.

E2M are due to the extended header. E2M performs better
than DDM because of lower number of refresh messages in-
jected into the network. However, it is to be noted that the
performance of DDM and E2M is same for 10 members list,
as there is no XF selected and E2M behaves like the basic
Xcast scheme.

D.4 Forwarding Efficiency

A higher value of forwarding efficiency indicates a less ef-
ficient protocol, as it needs a higher number of transmissions
to reach the same number of destinations. This is also a good
measure of bandwidth efficiency of a protocol, as the size of
data packets is much larger than control packets. The respective
plots for this metric are shown in Fig. 10.

The data forwarding efficiency of flooding is very poor as
compared to E2M and DDM. This is because of the redundant
transmissions involved in forwarding the Xcast packet. The for-
warding efficiency of flooding improves as the number of group
members increases since more and more nodes are included in
the forwarding topology, whose size does not change. Both
E2M and DDM are relatively immune to the group size change.
Interestingly, the forwarding efficiency improves slightly with
increase in group size for both of them, since it increases the
chances of path overlap between source and destination. The

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005

2 T T T T T T

Average control packet per data packet

. B2M ——
DDM-Basic -
0 . . FLOODING --x----
10 15 20 25 30 35 40 45 50
Group size
(a)
2 T T T T
15 i

Average control packet per data packet

E2M ——
DDM-Basic -
0 . ‘ IFLOODIN@ ------ L
0 100 200 300 400 500
Pause time
(b)

Fig. 8. Average Xcast packet header size for group size and pause time:
(a) Varying group size, (b) varying pause time.

forwarding efficiency of E2M is slightly better than DDM in
mobile scenarios. However, the increased node speed has a lit-
tle impact on forwarding efficiency, this is mainly because of the
presence of hidden terminal problem. A similar result has also
being reported in [11].

D.5 Member Refresh Overhead at Source

Members refresh overhead at the source measures the number
of member join packets received at the source per data packet
transmitted by it. This is an important metric as it indicates the
extra load generated on the source because of member refresh.
A higher number of join refresh may cause congestion at the
source, and hence may result into more collisions. It is to be
noted that a packet dropped near the source has greater negative
impact on delivery ratio than a packet dropped farther away. All
these factors reduce the data forwarding efficiency of a protocol.
In short, it is necessary to reduce the traffic flowing towards the
source. Fig. 11 gives the member refresh overhead at the source.
For DDM, it includes MEMBER_JOIN, whereas for E2M it in-
cludes both MEMBER_JOIN and XF_JOIN.

Obviously, there is no member refresh overhead in flooding.
For DDM, this overhead increases with the increase in group
membership, as more and more nodes will send join -messages
towards the source. In E2M, interception and aggregation of

GOSSAIN eral.: A SCALABLE EXPLICIT MULTICAST PROTOCOL FOR MANETS

0.06 ,
&
ES
2 005
©
k]
T
5 004
Q.
g
2z 003
EE
S 002} 1
o
L]
o
S 001 E2M —— -
> DDM-Basic -
<C 0 . . . FILOOD|J|}1G I..
10 15 20 25 30 35 40 45 50
Group size
(a)
0.06 . : .
o
5
a2 005
o)
o
T
§ 004
Q
¢
2 003 1
g
£ 002}]
v
U
[=2]
g 001} E2M ——
$ DDM-Basic -
< 0 . . FLOODING ~-x--
0 100 200 300 400 500
Pause time
()

Fig. 9. Average Xcast packet header size for group size and pause time:
(a) Varying group size, (b) varying pause time.

MEMBER_JOINs at an XF, and transmission of a cumulative
XF_JOIN for all the members served by the XF helps in reduc-
ing the number of refresh messages going towards the source. In
Fig. 11(a), a drop in “join implosion” above 40 users is mainly
contributed by the selection of additional XF for the same ses-
sion. However, as shown in the figure, the “join implosion”
problem becomes severe for DDM as the group size increases.

V1. E2M FOR IP NETWORKS

One of the primary motivations in designing the E2M proto-
col was to come up with an algorithm, which could be extended
to an IP network. To do so, one has to consider how one can
implement Xcast in the IP protocol stack. Do we need to have
a new header for Xcast packet (like DDM) on top of IP or we
should extend the IP header to support an Xcast session. In the
later case, the option header (IPv4) or next header (JPv6) can
be used to encode the list of destination for an Xcast session,
together with a flag to identify if it is an Xcast packet. As dis-
cussed before, this approach may result into duplicate transmis-
sion of Xcast packet if the number of users passing through a
next hop is more than what extended header can support. This
is true for both infrastructure and infrastructureless network as
long as we are extending IP to support basic Xcast scheme.

303

10 T T T T i . ‘
E2M ——
. DDM-Basic ----- oo
3 FLOODING -
c 8 r
L
<
&
]
2 8 |
T
S 4 | 1
5 K.
1 2
g | T I
2 5 |
a
0) \
10 15 20 25 30 35 40 45 50
Group size
@
10 T T '
E2M ——
DDM-Basic ----- emres
> FLOODING %
c 8+
v
9
&
(3]
A |
o
g
5 4 |
°
(vl
LT OO
<] 2 F i
o
0 : ' ' ‘
0 100 200 300 400 500
Pause time
(b)
Fig. 10. Average Xcast packet header size for group size and pause

time: (a) Varying group size, (b) varying pause time.

The initial implementation of E2M in MANETS follows the
scheme similar to DDM to support Xcast through extended
header. This form of Xcast implementation prevents the du-
plicate transmission of the same packet to reach different next
hops. But since the packets are transmitted through one hop
broadcast, and due to MAC layer collision, packet delivery ra-
tio is reduced significantly. It is worthwhile to mention here
that E2M can also work in IP-mode, wherein a node groups list
of all destinations served by a particular next hop and unicast
the packet to this particular next hop. Though this can lead to
duplicate transmissions, this scheme has the advantage that the
MAC layer (802.11) will deliver the packet, through RTS and
CTS, and hence will have far better packet delivery ratio than
trying to send it through one hop broadcast. We consider this
approach as our future research work. In the next section, we
explain some of the reasons behind the poor delivery ratio in the
broadcast approach. This observation is based on our simulation
work and we try to point out some of the MAC layer and routing
layer related issues when we try to provide Xcast in a MANET
scenario.

£

025 |
N

0.15 T]

0.1

Number of join message per data packet

0.05 EOM e
DDM-Basic ---- —
0 . N F‘LOODWG e
10 15 20 25 30 35 40 45 50
Group size
(@
E 0.3 . X] .
g
o 0.25 ¢
o
©
g 02f |
(]
g
a 0.15
(7]
g
C
S 0.1
G
g 005} M |
£ DDM-Basic - IV
é FLOODING - e
0 . . ! 5
Y 100 200 300 400 500
Pause time

(b)

Fig. 11. Average Xcast packet header size for group size and pause
time: (a) Varying group size, (b) varying pause time.

VII. XCAST IN MANET: ROUTING & MAC LAYER
ISSEUS

As discussed before, present schemes to implement Xcast
over MANETS try to utilize the broadcast property of the net-
work to forward an Xcast packet. This is carried out by mak-
ing the destination of the packet as broadcast and making the
time-to-live (TTL) field to one, so that the packet should not
be propagated to the whole network. When MAC layer (IEEE
802.11) receives such a packet, it treats the packet as a simple
broadcast and sends it without RTS, CTS, and ACK. So, there is
no mechanism employed by the MAC layer to tackle the hidden
terminal problem. For example, in the following Fig. 12, if both
nodes N1 and N3 try to forward the Xcast packet at the same
time, there will be collision at N2, and hence packets will be
lost. One way to minimize this effect is it to introduce a jitter
while forwarding a multicast packet, but as found in our simu-
lation study, its effect on minimizing the packet collision is less
than desired. We have observed by simulation that this effect is
much more severe as the rate of packet generation increases.

The packet loss due to MAC layer collision has a cascading
effect on the performance of the routing layer, and hence on
Xcast which is closely dependent on it. First of all, due to adopt-
ing a broadcast approach for packet forwarding, a node has no

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005

""" _Packet collisien
T 'at N2)

o066
Broadcas{\\ ‘ \
range N

Fig. 12. Hidden terminal.

way of knowing if a particular next hop has received any packet.
In addition to this, if a particular node which was serving as a
next hop during an Xcast session moves out, the routing layer
will not be aware of this movement for some time. This is be-
cause the MAC layer will not trigger any link failure to the rout-
ing layer, which, in turn will not send any route error towards the
source. Although nodes will eventually learn about node move-
ment of their neighbors through the neighbor discovery phase of
some on demand protocols (hello packet in AODV), but neigh-
bor discovery is performed only at periodic intervals and there
is a time gap between them. This implies that there is always
a potential problem of packet loss. In short, the routing layer
will not come to know about the movement of the node till the
next hello phase. The other way for a source to know about the
possible movement is through a MEMBER_JOIN message sent
from a particular member. But one has to keep in mind that this
MEMBER_JOIN message is also sent only at regular intervals.
A source initiates a route request for a node only when it misses
the MEMBER_JOIN message from this node.

It is to be noted that a route request is broadcasted through-
out the network, and hence generates a lot of overhead
[17]. In MANETs, this becomes severe if the nodes are
mobile and a source, after missing a MEMBER_JOIN, does
a route request for most of them at one time after MEM-
BER_REFRESH_PERIOD. To prevent this from happening, in
E2M, if a member misses MAX_SEQUENCE_GAP number
of packets from the source, rather than waiting for the source
to time out, it again sends a MEMBER_JOIN message to the
source. This helps not only in minimizing the time between a
node moving out and the source coming to know about it, but
also prevents the source from doing multiple simultaneous route
requests.

Another important observation in implementing E2M is the
expiry of a route entry for destinations served by a particular
XF at a forwarding node located between the source and the XF.
This may happen since a source, after selecting a XF puts only
XF’s address in the destination list field. For AODV (or any on-
demand protocol), which initially performed a route request for
all the member nodes, the route entries for nodes which have
moved under a XF are no longer updated, and only entry which
is updated in the routing cache of intermediate nodes is that of
the new XF. So, after ACTIVE_ROUTE_TIMEOUT, the source
and the intermediate nodes will remove the entries for all such
member nodes. Now, in E2M, if a periodic XF_JOIN refresh
message is lost, the source will simply remove this XF from
its XFT and encode the list of destination nodes served by this

GOSSAIN erf al.: A SCALABLE EXPLICIT MULTICAST PROTOCOL FOR MANETS

XF explicitly in all its future packet headers. Since the route
for this packet is already expired, it will trigger a route request
for all these destinations at the source. To prevent this from
happening, we have used XF_ACK for periodic XF_JOIN sent
from an XF. If an XF misses an ACK, it resends the XF_JOIN
to the source till MAX_XF_JOIN_RETRY is reached, when it
concludes that the source is no longer reachable. Other op-
tion is to put the complete list of destinations in the packet
header (similar to basic DDM scheme) at least once in each AC-
TIVE_ROUTE_TIMEOUT period. But, as observed through
simulation, the chance of this packet being lost near the source
is very high. Also, periodic mentioning of complete destination
list will increase the Xcast header size.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we propose a new scheme for small group mul-
ticast in MANETs named extended explicit multicast (E2M),
which is built on top of explicit multicast (Xcast) and makes it
scalable with the number of group members for a given multi-
cast session. E2M is based upon the novel concept of dynamic
selection of Xcast forwarders (XFs) between a source and pos-
sible destinations. Unlike other schemes, E2M does not make
any assumptions related the to network topology or node loca-
tion, which is important for MANETS given its rapid change in
topology. The selection of XFs is done based on group member-
ship and processing overhead involved in supporting Xcast at a
given node. This scheme can work with only a few E2M aware
nodes in the network and provides the transparency of stateless
multicast, reduces header processing overhead, minimizes con-
trol traffic, addresses the “‘join implosion” problem at source,
and makes Xcast scalable with the number of session members
without compromising the throughput. Through our extensive
performance evaluation, we have observed that E2M performs
better than basic Xcast scheme and existing schemes such as
DDM.

As future work, we plan to investigate the issue of multiple
sources for the same multicast session. Also, we intend to look
into the issue of hierarchical XFs wherein a XF can itself be a
parent of some other XF. Support of reliable Xcast in MANETSs
will also be considered.

ACKNOWLEDGEMENT

This work has been supported by the Ohio Board of Regents
Doctoral Enhancement Funds and the National Science Foun-
dation under grant CCR-113361. We would like to thank the
reviewers for their valuable comments. We also like to thank
Qihe Wang who reviewed the final version of this paper.

REFERENCES

[11 H. Gossain, C. M. Cordeiro, K. Anand, and D. P. Agrawal, “E2M: A
scalable explicit multicast protocol for manets,” in Proc. IEEE ICC 2004,
France, June 2004.

[2] H. Gossain, C. M. Cordeiro, and D. P. Agrawal, “Multicast: Wired to
wireless,” IEEE Commun. Mag., vol. 40, no. 6, pp. 116123, June 2002.

[3] R. Boivie, “A new multicast scheme for small groups,” IBM Research
Tech., Rep. RC21512 (97046), June 1999.

[4] D. Ooms and W. Livens, “Connectionless multicast,” IETF Internet Draft,
draft-ooms-cl-multicast-01.txt, work in progress, Oct. 1999.

305

[5] C.M. Cordeiro, H. Gossain, and D. P. Agrawal, “Multicast over wireless
mobile ad hoc networks: Present and future directions,” IEEE Network,
Special Issue on Multicasting: An Enabling Technology, vol. 17, no. 1,
Jan./Feb. 2003.

[6] S.J.Lee, W. Su,J. Hsu, M. Gerla, and R. Bagrodia, “A performance com-
parison study of ad hoc wireless multicast protocols,” in Proc. IEEE IN-
FOCOM 2000, Tel-Aviv, Israel, Mar. 2000.

[71 J.J. Garcia-Luna-Aceves and E. L. Madruga, “The core-assisted mesh pro-
tocol,” IEEE J. Select. Areas Commun., pp. 1380-1394, Aug. 1999.

[81 M. Gerla, S.-J. Lee, and W. Su, “On-demand multicast routing protocol
(ODMRP) for ad hoc networks,” [ETF Internet Draft, draft-ietf-manet-
odmrp-02.txt, work in progress, 2000.

[9] E. M. Royer and C. E. Perkins, “Multicast operation of the ad hoc on-
demand distance vector routing protocol,” in Proc. ACM MOBICOM’99,
Aug. 1999, pp. 207-218.

[10] L.Ji and M. S. Corson, “A lightweight adaptive multicast algorithm,” in
Proc. IEEE GLOBECOM’98, 1998, pp. 1036-1042.

{111 L. Ji and M. S. Corson, “Differential destination multicast—a MANET
multicast routing protocol for small groups,” in Proc. IEEE INFOCOM
2001, 2001, pp. 1192-1202.

[12] K. Chen and K. Nahrstedt, “Effective location-guided tree construction al-
gorithms for small group multicast in MANET,” in Proc. IEEE INFOCOM
2002, 2002, pp. 1180-1189.

[13] J.Luo, P. T. Eugster, and J.-P. Hubaux, “Route driven gossip: Probabilistic
reliable multicast in ad hoc networks,” in Proc. IEEE INFOCOM 2003,
2003.

[14] M.-K. Shin, Y.-J Kim, K.-S. Park, and S.-H Kim, “Explicit multicast ex-
tension (Xcast+) for efficient multicast packet delivery,” ETRI J., vol. 23,
no. 4, Dec. 2001.

[15] NS-2 network simulator (online), available at http://www.isi.edu/nsnam
/ns/index.html.

{16] C. E. Perkins, E. M. Belding-Royer, and S. Das, “Ad hoc on demand
distance vector (AODV) routing,” IETF Internet Draft, draft-ietf-manet-
aodv-12.txt, work in progress, Nov. 2002.

[17] Y.Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm prob-
lem in a mobile ad hoc networks,” in Proc. ACM/IEEE Int. Conf. Mobile
Computing Networking, Aug, 1999, pp. 152-162.

Hrishikesh Gossain is a Senior Systems Engineer in
Mesh Products Development Group in Motorola Inc.
He received his M.S. and Ph.D. from the Department
of ECECS, University of Cincinnati and B.E. in Elec-
tronics Engineering from Motilal Nehru Regional En-
gineering College, India, where he was undergradu-
ate Gold-Medalist of the College. He has several ap-
proved and pending patents in the areas of wireless
and mobile computing, access network design, QoS,
and e-media. He has previous work experience in Nor-
tel Networks in Richardson, Texas and Center for De-
velopment of Telematics (C-DoT), India.

Kumar Anand is an Engineer in Corporate R&D
group at Qualcomm, San Diego, CA. He received his
Bachelors degree in Electrical Engineering from Uni-
versity of Roorkee, India and completed his Masters
in Computer Engineering from University of Cincin-
nati, Ohio. His interest areas are wireless cellular sys-
tems, multicasting in mobile ad-hoc networks, IEEE
802.11, TCP/IP, protocol design for sensor networks,
and embedded systems development.

306 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005

Carlos Cordeiro is a Senior Member Research Staff
of Philips Research USA, Briarcliff Manor, NY. Be-
fore joining Philips Research, he was a Senior Re-
search Engineer at Nokia Research Center. In his cur-
rent capacity at Philips Research, Dr. Cordeiro is in-
volved with research of PHY and MAC aspects in the
area of cognitive radios. He actively participates in
the IEEE 802.22 standardization effort, and amongst
other responsibilities serves as the Chair of the MAC
subcommittee in IEEE 802.22. Dr. Cordeiro received
his Ph.D. in computer science and engineering in 2003
from the University of Cincinnati, OH, USA, where he won the honorable Out-
standing Doctoral Dissertation Award and the prestigious 2003/2004 National
Dean’s List Award. He is also listed in the 2005 Edition of Marquis Who’s Who
in America. His research interests include MAC protocol analysis and design,
IEEE 802.11/15/16/22, cognitive radios, power control, and ad hoc and sensor
networks. Dr. Cordeiro has served as TPC member of various meetings, has
published numerous papers in the wireless area, and in the past was the recipi-
ent of best paper awards from refereed networking conferences.

Dharma P. Agrawal is the Ohio Board of Regents
Distinguished Professor of Computer Science and
Computer Engineering and the founding director for
the OBR Research Center for Distributed and Mobile
Computing in the Department of Electrical & Com-
puter Engineering and Computer Science, University
of Cincinnati, OH. His current research interests in-
cluds the various aspects of wireless and mobile net-
works. Dr. Agrawal is an editor for the Journal of
Parallel and Distributed Systems and the International
— Journal of High Speed Computing. He has served as
an editor of the IEEE Computer Magazine, IEEE Transactions on Computers,
International Journal on Distributed Sensor Networks, International Journal of
Ad Hoc and Ubiquitous Computing, and International Journal of Ad Hoc and
Sensor Networks. His recent co-authored book on “Introduction to Wireless and
Mobile Systems™ has been adopted worldwide. He has been the Program Chair
and General Chair for numerous international conferences and meetings. He
was selected for the “Third Millennium Medal” by the IEEE for his outstanding
contributions. Four of his patents in wireless networking area have also been
approved recently. Dr. Agrawal is a fellow of the IEEE, ACM, and AAAS.

