Ion Migration Characteristics of a High Voltage Rotary Spark Airgap

고전압 회전 스파크 공격간의 이온 이동특성

  • 문재덕 (경북대 공대 전자전기공학과) ;
  • 김태훈 (경북대 공대 전기공학과) ;
  • 황덕현 (경북대 공대 전기공학과)
  • Published : 2005.09.01

Abstract

Ion migration characteristics of a rotary spark airgap of high voltage Pulse generator had been investigated. It was considered that the ion migration speed and the ions of the gases(atmosphere gases, $O_2,\;N_2,,\;and\;H_{2}O,\;etc$.) and the charged very fine particles(about $10\~100nm$ size) migrated through the upper stator ball and bottom stator ball of the rotary spark airgap would determined the rise and fall times of the output high voltage pulse. In this paper, a basic study on the ion migration characteristics of the rotary spark airgap between the spark stator ball and the ion-sensing electrode of the proposed high voltage pulse generator have been investigated experimentally. As a result, the three kinds of ion speeds were detected by the ion-sensing electrode installed at the position of the bottom stator ball of the ball type sparkgap high voltage pulse generator. The migration velocities, diameters, masses, charges, numbers of the ions and particles were obtained by experiments and calculations, which, however, would determine the rise and fall times of the output high voltage pulse.

Keywords

References

  1. S. T. Pai and Qi Zhang : Introduction to High Power Pulse Technology, World Scientific, 1-45 (1995)
  2. ハイパワ-テクノロジ硏究曾編 : パルスパワ?工學の基礎と應用,近代科學社, 52-98 (1998년도)
  3. Massimo Rea and Keping Yan : Evaluation of Puls Voltage Generator, IEEE. Trans on IA, 31, 3 (1995) https://doi.org/10.1109/28.382110
  4. K. Yan, Corona Plasma Generation. Eindhoven (2001)
  5. W. Wang, Z. Zhao, F. Lie and S. Wang, Study of NO/NOx removal from flue gas contained fly ash and water vapor by pulsed corona discharge, Journal of Electrostatics, 63 (2005) 155-164 https://doi.org/10.1016/j.elstat.2004.10.002
  6. B. M. Penetrante, and S. E. Schultheis, Non-thermal plasma techniques for pollution control, Spring-Verlag, Berlin Heidelberg, NATO ASI series 34, A&G (1993)
  7. G. Sathiamoorthy, S. Kalyana, W. C. Finney, R. J. Clark, B. R. Locke, Chemical reaction kinetics and reactor modeling of NOx removal in a pulsed streamer corona discharge reactor, Indersterial. Engineering Chemistry Res. 38 (5) (1999) 1944-1855 https://doi.org/10.1021/ie980544y
  8. 新版靜電氣ハンドブック,日本靜電氣學會(1998)
  9. A. Mizuno, K. Shimizu, A. Chakrabarti,S. Furuta, NOx Removal Process Using Pulsed Discharge Plasma, IEEE Trans. on IA, 31, 5, (1995) 957-962 https://doi.org/10.1109/28.464504
  10. M. M. Kekez : Simple sub-50ps rise-time high voltage generator, Rev. Sci. Instrum. 62(12) (1991) 2923-2930 https://doi.org/10.1063/1.1142182
  11. X. Xu and S. Jayaram: Generation of Steep Front Short Duration Impulse from Conventional Standard Impulse Generator-A Simulation Study, IEEE Trans on IA (1995) 1390-1394 https://doi.org/10.1109/IAS.1995.530464
  12. 박승록, 정석환, 김진규, 문재덕, Marx 펄스발생기를 응용한 소형 고전압 급준 펄스발생장치, 대한전기학회지, 50, 2, (2001) 72-78
  13. M. J. Rhee and B. N. Ding, Repetitive square pulse generation by inductive pulse-forming lines with a field-effct transistor as an opening switch, Review of Science lnstrumantation. 64 (6) (1993) 1665-1666 https://doi.org/10.1063/1.1144047
  14. R. M. Ness, B. D. Smith and E. Y. Chu etc, Compact, Megavolt, Rep-Rated Marx Generators, IEEE Trans. on ED. 38, 4, (1991) 803-809 https://doi.org/10.1109/16.75209
  15. S. L, Moran and L. W. Hardesty, High-Repetition-Rate Hydrogen Spark Gap, IEEE Trans. on ED 38, 4. (1991) 726-730 https://doi.org/10.1109/16.75197
  16. J. R. Woodworth, R. G. Adams and C. A. Frost : UV-Laser Triggering of 2.8-Megavolt Gas Switches, IEEE Trans. on PS, PS-10, 4, (1982) 257-26.1
  17. 문재덕, 이종훈, 이복희, 회전공극형 고전압 펄스발생장치, 대한전기학회, 논문지, 53C, 5 (2004) 1-45