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ALL POSSIBLE HIERARCHICAL QUADRATIC
REGRESSIONS FOR RESPONSE SURFACES f

SuNG-S00 KiM! SooN-SUN Kwon? AND SUNG-HYUN PARK?

ABSTRACT

In response surfaces analysis, we often proceed by supposing that, over
a limited region of factor space, a- polynomial of only first or second de-
gree might adequately approximate the true function. To find the best
subset model, all possible quadratic regressions for response surfaces can
be very valuable to get optimum solutions under some reasonable experi-
mentations. However, there is a very hard computational burden to get all
possible quadratic regressions. In practice, it is sufficient to consider only hi-
erarchical models. In this paper, we propose an algorithm to get all possible
hierarchical quadratic regressions for fitting response surfaces.
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1. INTRODUCTION

In response surface analysis, we consider models that help to ensure successful
experimentation. Suppose there are p independent variables and a dependent
variable y. The second-order response surface model is

Y4 p P
y=Po+ ) Bizj+ 3 Bzl + Y Bizizi + e
j=1 j=1 i<j

where € is the error term which is distributed with mean zero and variance o?2.
As in regression modelling, it is required to select best subset models, and

the most obvious way to choose an appropriate submodel is to perform all of the
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possible 2P(P+3)/2 _ ] regressions in the second-order model with p independent
variables. The computational burden grows rapidly to get all possible subset
models when independent variables are increased. This restricts our applying for
all possible subset regressions in response surfaces. However, as Faraway(2004)
says, when selecting variables in polynomial models, lower order terms should
not be removed from the model before higher order terms in the same variable
because of the scale change problem. Also in second-order response surfaces, we
would not normally consider removing interaction terms without simultaneously
considering the removal of related quadratic terms for the practical interpretation.
These mean that it is sufficient to consider only hierarchical quadratic models
for response surfaces. Hierarchical models are the models which include all the
lower order interactions and main effects that are marginal to any higher order
interaction in the model. Considering only all possible hierarchical quadratic
regressions, there still remains hard computational burdens.

Many algorithms for doing all possible subset regressions are proposed, and
these algorithms are generally based on sweepings or QR decompositions. Algo-
rithms based on sweepings or QR decompositions depend on the previous results
of sequential process to get all possible regressions. Hence applying these al-
gorithms for all possible quadratic regression models is not practical because
of serious computational burden and new sequences should be developed to do
all possible hierarchical quadratic regressions. Maybe regressions by leaps and
bounds proposed by Furnival and Wilson (1974) could be a possible solution in
selecting variables in second-order quadratic regressions. Recently new algorithm
based on triangular decomposition was proposed by Kim (2000). Unlike above
algorithms, the algorithm based on triangular decomposition does not depend on
the sequential sweepings or adjacent transpositions of columns. The results of
triangular decomposition for each model can be obtained from those of initial full
model. Also computational burden is not serious compared with that of sweep-
ings or QR decompositions. In this paper we will provide an algorithm to get all
possible hierarchical quadratic regressions based on triangular decomposition.

We will review in Section 2 all possible regressions by triangular decompo-
sition and order of generation to get all possible regressions. In Section 3, we
will provide a procedure for producing residual sums of squares for all possible
hierarchical quadratic regression models. Also, we will provide an example for
response surfaces.
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2. REVIEW OF ALL PO0OSSIBLE REGRESSIONS

Recently, all possible subset regressions using the triangular decomposition
was proposed by Kim (2000), which is simple but computationally efficient com-
pared with sweepings or QR decomposition methods. We review this algorithm
briefly.

[Definition of Triangular Decomposition)]

Let S be an m x m positive definite symmetric matrix. Then there exists
a unique unit lower triangular matrix L and a unique diagonal matrix D with
positive diagonal elements, such that S = L~'D(L™!)’ . The matrices L~! and
D are of the forms :

L=, ... .. ,D=|......... ,d;>0,4,j=1,2,...,m

[Property of Triangular Decomposition]

Let Z = (Y : X) where Y is a dependent variable vector, X is an n x p design
matrix, and L and D be the resulting matrices of the triangular decomposition
of Z'Z. We denote L and D as follows .

1 0 0...0]
Ay 1 0...0

L= )\Qy Adgg 1...0 ,D=d’iag(dy,d1,d2,...,dp)

| Aoy Apt Apz . 1

Then the residual sums of squares of the regression of Y on a subset of the other
variables, say (X1, Xo,...,Xk), is

SSEy.(x1,Xs,..X:) = (% + ) k<p.

Using this property, we can obtain the residual sums of squares for the fitted
model and also for the other models fitted in sequential order. For example,
if four independent variables labelled ABCD are fitted in that order, then the
residual sums of squares for the models A, AB, ABC and ABCD can be obtained
sequentially. To obtain the residual sums of squares of all possible subset models,



212 SUNG-S00 KIM et al.

detailed solutions were provided by Kim (2000) : (1) how to order the independent
variables and (2) how to obtain the triangular decomposition for a simpler model
using L and D for the full model without decomposing the design matrix of
the simpler model. Here the full model means the model which includes all the
independent variables. For the all possible hierarchical subset regressions, the
order of generations is important, so we briefly introduce the order of deleting
variables in case of p independent variables.

[Order of generation]

When the order of independent variables is defined, we can obtain the resid-
ual sums of squares sequentially in that order. For example, if p = 4 and the
independent variables are labelled ABCD , then the following 24! = 8 orders
can be implemented:

Order  Model

1234 A,AB,ABC,ABCD
234 B,BC,BCD

1 34 AC,ACD

34 C,CD
1 24 ABD
2 4 BD
1 4 AD
4 D

Here (1234) means the independent variables (ABCD) respectively. This
ordering can be obtained by deleting (1),(2),(12),(3),(13),(23),(123) from (1234)
sequentially. This deleting sequence can be generalized as follows:

k Sequence(Sk)

1 1

2 1 2 12

3 1212 3 1323123

4 121231323123 4 1424124 34 134 234 1234

Here Sk = (Sk_l,k,Tk_l), (k = 2,3, AR ¢ 1;31 = 1) where Tk:—l = (Sk—l :
k). Using this sequence, we can efficiently construct the orders to obtain the
residual sums of squares for all possible regressions.
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3. ALL PoOssIBLE HIERARCHICAL QUADRATIC REGRESSION MODELS
FOR RESPONSE SURFACES

In response surfaces, we consider main effects, two-interaction effects and
quadratic effects for practical reasons. Here, we propose the order of generation
to obtain the residual sums of squares of all possible hierarchical quadratic re-
gressions. Also we provide an example to select the best subset model. After
selecting the best subset model, we can proceed canonical analysis for response
surfaces.

8.1. Procedure to get All Possible Hierarchical Quadratic Regressions

In the second order response surface model,
P P , &
y=Po+ X Biz;+ ) Bjjzj + 3 Bijzizj + e,
j=1 j=1 1<j

if we use all possible algorithm based on triangular decomposition to select a best
subset model for p main independent variables, the required number of triangu-
lar decomposition is 2P°+3)/2-1_ This number is incredibly increasing compared
to the number of 2P~ which is the required number of triangular decompo-
sition considering only main effects. Hence, it is impractical to do all possible
subset regressions in quadratic response surface models because of serious com-
putational burdens. However, as Faraway (2004) says, practically in response
surface analysis, if higher order terms are included, the lower order terms should
be included. Considering this fact, it only suffices to consider the hierarchi-
cal regression models. To generate all possible hierarchical quadratic regression
models using triangular decomposition, the sequential order of deleting variables
is important. We provide the procedures for generating all possible hierarchical
quadratic regressions.

In hierarchical regression models, if lower order terms are deleted, higher or-
der terms related to the lower order terms do not exist in the model. Also in
second-order response surfaces, we would not normally consider removing interac-
tion terms without simultaneously considering the removal of related quadratic
terms. Considering these facts, we can devise new stepwise deleting order of
variables from the initial full model. This stepwise deleting order consists of two-
steps: deleting order of main effects and deleting order of interacting terms under
the condition that main effects exist in the model. This stepwise deleting order
is like the followings:
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TABLE 3.1 Deleting sequences for p=38 variables

order | A B C| AB AC BC| A* B* C?
F [1 2 3[4 5 6117 8 9
1 .2 3| . . 6. 8 9
2 |1 3 5 . |7 9
12 | . 3| . . A
3 |1 2 4 . 78 .
4 |1 2 3 5 6 |7 8 9
5 |1 2 3| 4 6 |7 8 9
6 |1 2 3 6 8 9

(1) Initially, make the full design matrix consisting of main effects, interaction
terms and quadratic terms.

(2) If lower order terms are deleted, then related higher order terms are also
deleted. For example, if main effect A is deleted, then related higher order terms
AB and A? are also deleted. Hence, first we generate deleting order of main
effects similar to the order used in Kim (2000). For example, for p = 4(called
1234) variables, the order of deleting variables is (1)-(2)-(12)-(3)-(13)-(23)-(123)-
(4)-(14)-(24)-(34). Here the last variable terms (4)-(14)-(24)-(34) are added since
we should consider the interaction terms. After deleting these variables, if there
are more than 3 variables, then the deleting order of Section 2 is applied to in-
teraction terms.

(3) The second step is to generate the deleting order of interaction terms un-
der the condition that all main effects are included. This step is like the order of
all possible subset regressions, so the same order as the deleting order of genera-
tion of Section 2 is only applied to interaction terms.

For easy understanding, we will give two examples for p = 3 and p = 4 vari-
ables. The order of deleting sequences for p = 3 and p = 4 variables are given
in [Table 3.1] and [Table 3.2] respectively. The required number of triangular
decomposition for p = 3,4,5 to get all possible hierarchical quadratic models is
only 8, 55, 723 respectively, while the corresponding numbers of triangular de-
compositions to do all possible subset regressions of second-order response surface
model are 256, 8192, 524288 respectively.
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TABLE 3.2 Deleting sequences for p=4 variables

order [ A B C D] AB_ AC AD BC BD CD]| A’ B’ c? D?
¥ 1 2 3 4 5 6 7 8 9 10 11 12 13 14
-1 . 2 3 4 . R . 8 9 10 . 12 13 14
1-8 . 2 3 4 . . 9 10 . 12 13 14
1-9 . 2 3 4 . 8 . 10 . 12 13 14
1-89 . 2 3 4 . . . 10 . . 13 14
2 1 . 3 4 6 7 . . 10 11 . 13 14
2-6 1 . 3 4 7 . . 10 11 . 13 14
2-7 1 . 3 4 6 . . . 10 11 . 13 14
2-67 1 . 3 4 . . . . 10 . . 13 14
12 . . 3 4 . . . . 10 . 13 14
3 1 2 . 4 . 7 . 9 11 12 . 14
3-5 1 2 . 4 . 7 . 9 11 12 14
3-7 1 2 . 4 5 . . . 9 11 12 14
35711 2 . 4 . . 9 . 12 14
13 . 2 . 4 . . 9 . 12 14
23 1 . . 4 . 7 . . 11 . 14
123 . . . 4 . . . . . .
4 1 2 3 . 5 6 . 8 . 11 12 13
4-5 1 2 3 . 6 . 8 . 11 12 13
4-6 1 2 3 . 5 . . 8 . 11 12 13
4-56 1 2 3 . . . 8 . . 12 13
14 . 2 3 . . . 8 . . 12 13
24 1 . 3 . . 6 . . . 11 . 13
34 1 2 . . 5 . . . R 11 12
|5 1 2 K] 4 R [} T 8 9 10 11 12 13 14
6 1 2 3 4 5 . 7 8 9 10 11 12 13 14
56 1 2 3 4 . 7 8 9 10 11 12 13 14
7 1 2 3 4 5 6 . 8 9 10 11 12 13 14
57 1 2 3 4 . 6 . 8 9 10 11 12 13 14
67 1 2 3 4 5 . R 8 9 10 11 12 13 14
567 1 2 3 4 . . . 8 9 10 11 12 13 14
8 1 2 3 4 9 6 7 . 9 10 11 12 13 14
58 1 2 3 4 . 6 7 . 9 10 11 12 13 14
68 1 2 3 4 5 . 7 . 9 10 11 12 13 14
568 1 2 3 4 . . 7 . 9 10 11 12 13 14
78 1 2 3 4 ) 6 . . 9 10 11 12 13 14
578 1 2 3 4 . 6 . . 9 10 11 12 13 14
678 1 2 3 4 5 . . . 9 10 11 12 13 14
5678 1 2 3 4 . . . 9 10 . 12 13 14
9 1 2 3 4 5 6 7 8 . 10 11 12 13 14
59 1 2 3 4 . 6 7 8 10 11 12 13 14
69 1 2 3 4 5 . 7 8 10 11 12 13 14
569 1 2 3 4 . . 7 8 10 11 12 13 14
79 1 2 3 4 5 6 . 8 10 11 12 13 14
579 1 2 3 4 . 6 . 8 10 11 12 13 14
679 1 2 3 4 5 . . 8 10 11 12 13 14
5679 1 2 3 4 . . . 8 10 . 12 13 14
89 1 2 3 4 5 6 7 R 10 11 12 13 14
589 1 2 3 4 . 6 7 10 11 13 14
689 1 2 3 4 5 7 10 11 12 13 14
5689 1 2 3 4 . 7 10 11 13 14
789 1 2 3 4 5 6 . 10 11 12 13 14
5789 1 2 3 4 . 6 10 11 13 14
6789 1 2 3 4 5 10 11 12 13 14
56789 [ 1 2 3 4 . 10 . 13 14

If we use the QR decomposition procedure proposed by Smith and Bremner
(1989) to do all possible quadratic regressions, the minimum numbers of sequences
are 502, 16369, 1048555 respectively. While the ordering of subsets of sweeping
methods proposed by Garside (1965) are 511, 16383, 1048575 respectively. Hence
computational burden of our proposed procedure is considerably diminished, and
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TABLE 3.3 An example in Myers(1976), p223

1 | T2 | X3 y 1 | T2 | T3 y

-1 -1 -1 57 0 0 0| 63
1! -1]-11]40 -2 0 0| 28

-1 1| -1119 2 0 0] 11
1 1] -1140 0] -2 0 2

-1 -1 1} 54 0 2 0| 18
1] -1 1141 0 0| -2 | 56

-1 1] 21 0 0 2 | 46
1 1|43

all possible hierarchical quadratic regressions for response surfaces can be used
in real problems.

3.2. FEzample

We provide example using the p=3 independent variables of {Table 3.3}. First
we make full design matrix of X after checking collinearity. In fact, it is easy
to check the collinearity since the diagonal elements d; that are near to zero
indicate that the jth variable can nearly be written as a linear combination of
its predecessors. After checking the collinearity the design matrix for response
surfaces is given as X = (1,%;, 2, T3, T T2, T1 T3, Te T3, T; , T3 , T4 ) and the results
of all possible hierarchical quadratic regressions are shown in [Table 3.4]. From
this result, we can select a best subset model using the criterion like Ridj or
Cp. If we use criterion Rﬁdj ,
can be selected. After fitting regression model, we can proceed further canonical
analysis for response surfaces.

the model based on variables (x1,z2, 172, T%, 73)

4. CONCLUDING REMARKS

When we are interested in variable selection in response surface analysis,
getting all possible subset models is a best solution. However the amount of
calculations required to perform all possible subset models is formidable. In
second-order response models, it is practical that if higher order terms are in-
cluded, the lower order terms should be included. Also in second-order response
surfaces, we would not normally consider removing interaction terms without si-
multaneously considering the removal of related quadratic terms. Considering
these facts, we can only consider the all possible hierarchical quadratic regression
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TABLE 3.4 All possible hierarchical quadratic regressions for p = 3 variables

N R? R2,; Cp Variables

1 | 0.0058 | -0.0707 | 16.8624 | z:

1 | 0.0179 | -0.0577 | 16.5225 | x2

1 | 0.0038 | -0.0729 | 16.9180 | z3

2 | 0.0237 | -0.1391 | 18.3610 | 21, x»

2 | 0.0217 | -0.1414 | 18.4167 | z2, x3

2 1 0.0095 | -0.1555 | 18.7565 | z1, x3

3 | 0.0274 | -0.2378 | 20.2552 | z1, x2, T3

3 | 0.0229 | -0.2435 | 20.3808 | z2, z3, zaxa

3 | 0.0102 | -0.2598 | 20.7382 | z1, x3, z1%3

3 | 0.1629 | -0.0654 | 16.4581 | z1, x2, 122

4 | 0.1667 | -0.1666 | 18.3523 | x1, x2, T3, T1Z2

4 | 03181 | 0.0454 | 14.1092 | z2, z3, Tox3, =5

4 | 01087 | -0.2479 | 19.9784 | z1, xa, z123, T3

4 | 0.2614 | -0.0340 | 15.6983 | z1, 2, 122, 23

4 | 0.0281 | -0.3607 | 22.2369 | x1, x2, T3, T1Z3

4 | 0.0287 | -0.3598 | 22.2193 | z1, w2, x3, T273

5 | 0.1674 | -0.2952 | 20.3340 | z1, z2, 3, T1Z2, T1X3

5 | 0.3821 | 0.0388 | 14.3171 | zo, z3, Taxs, =3, x3

5 | 0.2323 | -0.1941 | 18.5130 | z1, xa, z1x3, 2%, 23

5 | 0.7893 | 0.6722 | 29054 | z1, z2, T122, 27, x5

5 | 0.0204 | -0.5099 | 24.2010 | z1, z2, Z3, T1Z3, T2Z3

5 0.1680 -0.2943 203164 I, T2, T3, T1T2, T2I3

5 | 0.3239 | -0.0518 | 15.9477 | z1, z2, z3, z2x3, Z3

6 | 0.1686 | -0.4549 | 22.2981 | zi1, x2, 3, T1T2, T1Z3, T2T3

6 | 0.1278 | -0.5263 | 23.4412 | z1, x2, T3, T1T3, T2T3, T3

6 | 0.2665 | -0.2837 | 19.5566 | z1, z2, T3, T1T2, TaT3, T3

6 | 0.3878 | -0.0713 | 16.1556 | z1, 2, x3, T2x3, T3, T3

7 | 0.2671 | -0.4658 | 21.5383 | z1, z2, x3, T1x2, T1Z3, TaTz, T:
7 | 06557 | 0.3114 | 10.6483 | z1, z2, 3, T123, TaZs, T2, T3

7 | 0.7943 | 0.5887 | 6.7637 | z1, z2, T3, T1T2, T2T3, T3, T3

8 | 0.7950 | 0.5216 | 8.7454 | zi, z2, z3, z1T2, T1T3, T2T3, T3, T3
8 | 0.6823 | 0.2587 | 11.9029 | z1, z2, x3, x1%3, X223, T3, =3, x3
8 | 0.8209 | 0.5822 | 8.0183 | z1, 2, 3, T1T2, T2E3, T2, T3 T2
9 | 0.8216 | 0.5004 10 Z1, T2, T3, T1L2, T1L3, Tols, L2, L3, T3

models. To apply sweeping methods or QR decomposition methods to all possi-
ble hierarchical methods, the new procedures of ordering or sequences should be
developed and this is to be the subject of future work. To do all possible subset
regressions of second-order model, the branch and bound algorithm proposed by
Furnival and Wilson (1974) maybe a possible solution.
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Here we provide the procedures to do all possible hierarchical quadratic re-
gressions for response surfaces. This is an extension of the procedures to get all
possible subset models based on the triangular decomposition procedures pro-
posed by Kim (2000). Like the procedures proposed by Kim (2000), each trian-
gular decomposition results of each new model can be obtained using those of
initial full model. This gives the possibility of adjusting the procedures to the
environment of parallel distributed computing systems.

The proposed procedures to get all possible hierarchical quadratic regressions
can be adjusted to select a best subset model containing dummy independent
models. In fact, when dummy independent variables are included in the model,
it is general to consider the interaction effects. In this case, we can only consider
the hierarchical models without quadratic terms.

For convenience, we provide a program written in R. This program is for
the model including two-factor interactions and quadratic terms. For reference,
the user cpu time running Example 3.2 is 0.03 on the Pentium 4 CPU 3.20GHZ
Window XP system.
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