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A STUDY ON THE EFFECT OF POWER
TRANSFORMATION IN SPATIAL STATISTIC ANALYSIS

JIN-HEE LEE! AND KEY-IL SHIN?

ABSTRACT

The Box-Cox power transformation is generally used for variance sta-
bilization. Recently, Shin and Kang (2001) showed, under the Box-Cox
transformation, invariant properties to the original model under the large
mean and relatively small variance assumptions in time series analysis. In
this paper we obtain some invariant properties in spatial statistics.
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1. INTRODUCTION

The Box-Cox power transformation is the most frequently used in statistical
analysis. Generally, most of data, in spatial statistic analysis have the long tail
or unsymmetric distribution and then data transformation is usually required.
Although many researches have been devoted to studying transformation, decid-
ing whether the transformation will be better off at prediction or not is not quite
simple. Even we could not get the effect of the transformation. Recently Griffith
et al. (1998) discussed the importance of transformations for spatial data and
examined bivariate Box-Cox/Box-Tidwell transformations of the dependent and
independent variables in a spatial autoregression. And Shin and Kang (2001)
showed that order and first step ahead forecast of the transformed model are
approximately invariant to those of the original model under certain assumptions
on the mean and variance. In this paper the power transformation proposed by
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Box-Cox (1964) is studied with spatial statistics. The power transformation and
related theories have been applied to spatial statistic analysis. In spatial statistic
analysis, many important statistical results are obtained under the stationarity
assumption. See Cressie (1993) for the stationarity assumption. When a process
has non-constant error variance, the Box-Cox power transformation is applied
which is given by

ZMNX),  A#0,

log(Z(X)), A =0 (-1

Yi(X) = {
where original spatial data, Z(X) are positive. Here X stands for location. We
assume that the transformed data Y)(X) are symmetric and have the stabilized
variance and A is the power transformation parameter.

The transformed data, Y)(X) are used in data analysis procedure and krig-
ing. After kriging with transformed data, retransformation is used. Shin and
Kang (2001) showed that for stationary time series, the transformation process
is not sensitive with large mean relative to a small error variance. In this pa-
per, we obtain some invariant properties of the power transformation in spatial
statistics. This paper is organized as follows. Invariant properties of correlogram,
variogram, confidence interval and kriging for the spatial statistic model subject
to the transformation are obtained in section 2. In section 3, examples are illus-
trated for those invariant properties and finally, some concluding remarks are in
section 4.

2. INVARIANT PROPERTIES

Let us consider a spatial stochastic process, {Z(X)|X € D} where X stands
for location and D € R%,d > 1. Assume that this process is ergodic and satisfies
the hypothesis of intrinsic stationarity and given by

Z(X) = pz +4(X)

where pz = E(Z(X)) is a unknown constant and (X)) is an error obtained from
the location X.

With this assumption and use of Taylor series expansion, we obtain invariant
properties of correlogram, range of variogram, confidence interval and kriging
€rror.
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2.1. Invariant properties on correlogram

Let Y5 (X) be the transformed process defined in (1.1) and consider the Taylor
series expansion up to the first-order term. Then we have

e+ N EZ(X) —pz), A#0,
X~ { log(pz) H uz(Z(X) - pz), A=0 @1)

where pz = E(Z(X)).
Thus, for A # 0, we have

YA(X) = py = Z(X) = py ~ My H(Z(X) ~ pz) (2.2)
and for A =0,

YA(X) — py ~ log(Z(X)) — log(uz) = pz (Z(X) — uz). (2.3)

Using equation (2.2) and (2.3), we have the approximate variance of Y} (X)
and covariance between Y3 (X;) and Y\(X;),i=1,2,3--- ,n,j =1,2,3,--- ,nfor
A#0:

O Var(B(X) & (g )Var(Z(),
Cov(A(X), Ya(X;)) & (i) M3k, )Cou(Za(X), Za(X;).

Then under the assumption, uz(X;) = E(Z(X;)) = E(Z(X;)) = uz(X;),

_ Cov(Yx(Xy), YA (X;)
VVar(Ya(X;))/Var (YA(X;))

~ COU(Z(Xi),Z(X]'))
VVar(Z(X)/Var(Z(X,)

In addition, for A = 0, we have the same result using (2.3). Therefore the
correlogram is approximately invariant under the power transformation.

OV (X:),Ya(X;) = Corr(Ya(Xi), Ya(X;)

= 0Z(X.),2(X;)-

2.2. Invariant properties on variogram

Variogram estimation is a crucial stage of spatial analysis because it deter-
mines the kriging weights. It is important to have a variogram estimator which
remains close to the true underlying variogram.
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Var(Z(X + h) — Z(X)) = 2v(h), VX, X+he D

where 2y(h) is the variogram. We consider three variogram estimators suggested
by Matheron’s (1962) method, Cressie and Hawkins (1980)and Genton’s (1998).

Now, let us look at the Box-Cox transformations of variogram. First, the
most widely used classical variogram estimator is due to matheron (1962) which
is given by

N(h)
%1(h) = N—E,; S (G(X) - Va(Xi +h)?, h € R (2.4)
=1

where N(h) is the number of pairs of observations among the available data
separated by lag h.

This estimator is unbiased, but when outliers exist in the data, the results
will be heavily affected. For that reason, Cressie and Hawkins (1980) proposed a
robust estimator defined by

N(h)
1 1 1
2y2(h) = Y\ (Xi) - i 4 h d (2.5

where the denominator corrects for bias under Gaussianity.
And similarly, Genton’s (1998) estimator of the variogram is given by

2s(h) = [2219(|Vi(h) - ;Wi < jll’ h e RE (26)

RIS
where k = (172,17%) and V;(h) = Y3(X;) — YA(X; + A).
As seen in equation (2.4) through (2.5), variogram estimators are obtained
only through {Y)(X;) — Ya(X; + h)}. Using equation (2.1), for X # 0,
{Y5(X) = Ya(Xi + R} =~ My H{Z(X:) — Z(X; + h)} (2.7)
and for A =0,

(306) = Ya(Xi + W} » ——{Z(X) = Z(X; + )} (2.8)

Plugging (2.6) and (2.7) into 4;(h),7 = 1,2,3, in (2.4) and (2.5) we have the
following transformed variogram estimator.
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then
A¥ (h) ~ 2 - AE(h). (2.9)

Note that ¢? is only a function of A and uz which are constant. Therefore
variogram estimators of transformed data are proportional to those of the original
data.

After obtaining variogram estimates, we try to fit theoretical variogram. In
this section, we consider three theoretical variogram : Spherical variogram, Ex-
ponential variogram and Gaussian variogram

Spherical model :

0, t=0,
Y5(t,0) ~ ¢ (Bo+6:1{3L - 3(£)°}, 0<t <R,
b0 + 01, t > R.

Exponential model :

0, t=0,
(60 + 61(1 — exp(—£)), t > 0.

Ye(t,0) = {

Gaussian model :

oy~ t=0,
YT (80 + 011 — exp(— L)), £ > 0

where 6 is nugget, 6, is sill and R is range. It is known that actual ranges

depend on the models. But these are proportional to R in models, we just use
the estimate of R.

From equation (2.9), we can easily obtain the results of

s 9 a a4 o2
Boy =~ c* - boz,b1y ~c”- b1z
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and
Ry 2] ﬁz.

So the power transformation does not affect to the estimate of range.

2.8. Invariant properties of kriging and confidence interval

Now let us consider the ordinary kriging. Due to the unbiasness for the
ordinary kriging, we have the following restriction:

T
Zm =1
i=1

With the above restriction, the coefficients of optimal ordinary kriging are ob-
tained by

(1-1T"'y)
1'r-11
where matrix Ipxn = v(X; — X;),¢ = 1,2,---,n,j = 1,2,--- ,n and ynx1 =
¥(Xo — Xi),i = 1,2,--- ,nand 1’ = (1,1,---,1). See Cressie (1993) for more

details.

Denote my, mz as kriging coefficients of the transformed data and the original

r=T"Y(y+ i) (2.10)

data respectively. Then using (2.9) we have

. 1 - 1Ty %y

. oy a1 (L=TTF%2)
— )=T + —_—ec
1'F;11 ) Z (72

ry = T35 By + Tt =4z (211)
Therefore we have an invariant property of kriging coeflicients.

Next consider the optimal kriging predictor. The optimal kriging predictor
using the original data is obtained by Zo = Y1, 2, Z(X:).

Let Zf}o be the optimal kriging predictor of the transformed data. Then
similarly we can calculate ZA{\/O = Y 1 7y, Ya(X;). Also denote Zyo as final kriging
predictor after retransformation. Then we have, A # 0,

Zvo= {3 av (X)) ~ {3} + MY wvi(Z(X) - z)}r. (212)
i=1 i=1

Using (2.11) and the result in Shin and Kang (2001), equation (2.12) becomes
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n
Zyom bz + Y tvilZ(Xi) - fiz)} = Y _ 72, Z(Xa). (2.13)
i=1 i=1
Also, one can easily obtain the same result for A\ = 0. Therefore we obtain an
invariant property of the optimal kriging predictor.
Next consider kriging error and confidence interval. Kriging error can be
obtained (Cressie, 1993) by

(I0~1y-1)?
(iIr-1) -

Then the kriging error for transformed data is as following:

of =T~y ~

~2 Al Th=1~
oy, =4yl - -
Yo = ylty Y (1’1‘;11)
Then again using (2.9) we have
Th=1z 2
~2 2 =14 (Il 4z — 1) 2 -2
6y, ~C r — —— =c"-0 2.14
Yo (’YZ z Yz (1,1.,511) ) Zo ( )

where 07,2 is the kriging error for original data. Therefore 6%, ~ ¢?-6%,. That is,
kriging error obtained by using the transformed data is a constant times kriging
error obtained by using the original data. We use this result for obtaining an
invariant property of confidence interval. Consider a 95% confidence interval
using the original data:

(ZO —1.960 79, ZO + 1.960’20).

The confidence interval for the transformed data is also defined by, for A # 0,
from the above equation,

(Z$o — 1.960v0, 234+ 1.960y0). (2.15)
Then using (2.12) and (2.14) we have

n
{13 + 231 #viZ(X) - fiz) £ 196Ny 620} 7.
=1

Now Y i, my; = 1, we have
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n
R N 1
(83 + MY wvi(Z(X) — pz £ 1.96620)} 3
i=1
= {iz+ > myi(Z(X) — fiz + 1.966 20)}
i=1

= {>_ #yi(Z(X) £1.96620)}

i=1
n
=Y #z:i(Z(X) £ 1.96620)}
i=1
= 74+ 1.966 0. (2.16)

So two confidence intervals are approximately the same. Also for A = 0, one
can get the results.

3. ANALYSIS OF REAL DATA

From the results of section 2, we calculate the estimates of variogram with
Jura data (Goovaerts, 1997) using the following models such as spherical model,
exponential models and gaussian model, and obtain the kriging values. For cal-
culations, we use s-plus package.

3.1. Parameter estimate(range, sill and nugget)

In order to see, with large means and relatively small variance, the approxi-
mate invariant properties, range, sill and nugget of variogram are calculated with
original data and the data which are added 20 and 50 each to original data respec-
tively. Then we consider the 5 ways of transformations with A = 1,0.5,0,-0.5
and —1. At this point, adding the constants(20 and 50) to original data makes the
mean of data larger than original one and that can give the clue of the invariant
properties on variogram.

Table 1, 2 and 3 show that the changes of range, sill and nugget with 3 different
data set to 3 different models. For the values of ranges, it can be easily confirmed
the invariant properties with 5 ways of transformations. Also we tabulate gljéoy
and 'c—lgély to check the theoretical results on nugget and sill.

From the result of Table 1 to 3, we see that the values of ranges converge to
the range of original data when the mean of the data are large. Also we confirm
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TABLE 3.1 The ranges of variogram

spherical model ezponential model gaussian model
A data data data | data data data | data data data
+20 450 - 420 450 +20 450

1.0 | 2261 2261 2262 ) 1677 1678 1678 | 1.301 1301 1.301
05 | 2.084 2255 2259 | 1.068 1.624 1.633 | 1.162 1.292 1.297
0 1.978 2.238 2256 | 0.773 1574 1.655 | 1.050 1.283 1.293
—0.5 | 1.842 2219 2252 | 0.590 1.528 1612 | 0.950 1.274 1.290
-1 1.677 2201 2245 | 0445 1484 1591 | 0.840 1.266 1.286

TABLE 3.2 The sill of variogram

spherical model exponential model gaussian model
A data data data | data data data | data data data
+20 +50 +20 450 +20 4350

1.0 | 0.080 0.080 0.080 { 0.107 0.107 0.107 | 0.068 0.068 0.068

0.5 | 0.093 0.080 0.080 { 0.113 0.105 0.107 | 0.076 0.067 0.068

0 0.120 0.077 0.080 | 0.151 0.104 0.106 | 0.097 0.063 0.066

—0.5 | 0.171 0.080 0.080 | 0.237 0.104 0.106 | 0.138 0.067 0.066

—1 | 0273 0.08 0.080 | 0.446 0.103 0.105 | 0.223 0.067 0.067

TABLE 3.3 The nugget of variogram

spherical model exponential model gaussian model
A data data data | data data data | data data data
+20 450 +20 450 +20 450

1.0 | 0.373 0.373 0.373 | 0.375 0.375 0.375 | 0.390 0.390 0.390

0.5 | 0.393 0371 0.373 | 0.388 0.372 0.375 | 0.414 0.388 0.390

0 0.445 0370 0.372 | 0.423 0.372 0.373 | 0.470 0.388 0.389
-0.5 | 0.537 0.369 0.371 | 0.477 0370 0.373 | 0.572 0.386 0.388
-1 10691 0.367 0371 0.520 0.368 0.372 | 0.743 0.385 0.388
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TAEeLE 4.1 The MSE on kriging

spherical model exponential model gaussian model
A data data data | data data data | data data data
+20 450 +20 450 +20 450

1.0 | 0.385 0.385 0.385 | 0.384 0.384 0.384 | 0418 0.418 0.418
05 | 038 0385 0.385 | 0374 0.383 0.383 | 0.421 0418 0.416
0 0.407 0385 0.385 | 0.374 0.382 0.383 | 0.439 0417 0.418
-0.5 | 0.540 0.385 0.385 | 0.375 0.382 0.383 | 0.467 0418 0.418
-1 | 0469 0385 0.385 | 0.323 0.381 0.383 | 0.499 0418 0418

the results on sill and nugget.

3.2. Kriging and Kriging error

Checking invariant properties on kriging prediction, we eliminate one of the
data points temperately from the data sets and then predict its value by kriging
using the remaining data points. For each A, we retransform to get proper predict
values. Following Table 4 shows MSE = L 3% (Z; — Z;))? for each A. Again
one can see the invariant properties.

4. CONCLUDING REMARKS

The Box-Cox transformation is generally used for variance stabilization and it
makes the estimation and testing more reliable. However, sometimes this trans-
formation causes the increasing bias (Granger and Newbold, 1976) and makes
the model more complicated, so definitely interpretation of the results is difficult.
This study shows the effect of the Box-Cox transformation to spatial statistic
analysis. If data have the large mean and relatively small variance, specially in
case of using Box-Cox transformation with first order Taylor expansion, some
invariant properties can be obtained. The results obtained in this paper should
be taken into account in use of the power transformation.

REFERENCES

Box, G. E. P., Cox, D. R. (1964). “An analysis of transformations”, Journal of the Royal
Statistical Society Series B, 26, 211-252.

CreEssig, N. A. C. (1993). “Statistics for spatial data”, John Wiley and Sons, Inc.

CRESSIE, N., HAWKINS, D. M. (1980). “Robust estimation of the variogram”, Mathematical
Geology, 12, No. 2, 115-125.



Box-Cox POWER TRANSFORMATION IN SPATIAL STATISTIC 183

GENTON, M. C. (1998). “Highly robust variogram estimation”, Mathematical Geology, 30,
No. 2, 213-221.

GOOVAERTS P. (1997). “Geostatistics for natural resources evaluation”, Ozford University
Press, New York.

GRANGER, C. W. J., NEWBOLD, P. (1976). “Forecasting Transformed Series”, Journal of the
Royal Statistical Society, Series B(Methodological), 38, Issue 2, 189-203.

GRIFFITH, D., PAELINCK, J., GASTEL, R. V. (1998). “The Box-Cox Transformation: Compu-
tational and interpretation features of the parameters”, Econometric Advances in Spatial
Modelling and Methodology, 46-56.

KarLuzny, S. P., VEGA, S. C., Carposo, T. P., SHELLY, A. A. (1998). “S+SpatialStats
User’s Manual for Windows and UNIX”, Springer.

MATHERON, G. (1962). “Traite de Geostatistique appliquee”, Tome I. Memoires du Bureau
de Recherches Geologiques et Minieres, No. 14, Editions Technip, Paris.

SHIN, K-I., KanNg, H-J. (2001). “A study on the effect of power transformation in the
ARMA(p,q) model”, Journal of Applied Statistics, 28, No. 8, 1019-1028.



