혈장분획제제 제조공정에서 크로마토그래피 세척 검증을 위한 모델바이러스로서의 Porcine Parvovirus 정량

Quantitative Real-Time PCR of Porcine Parvovirus as a Model Virus for Cleaning Validation of Chromatography during Manufacture of Plasma Derivatives

  • 길태건 (한남대학교 이과대학 생명과학과) ;
  • 김원중 (한남대학교 이과대학 생명과학과) ;
  • 이동혁 (한남대학교 이과대학 생명과학과) ;
  • 강용 (㈜녹십자 종합연구소) ;
  • 성학모 (㈜녹십자 종합연구소) ;
  • 유시형 (식품의약품안전청 혈액제제과) ;
  • 박순희 (식품의약품안전청 혈액제제과) ;
  • 김인섭 (한남대학교 이과대학 생명과학과)
  • Kil Tae Gun (Department of Biological Sciences, Hannam University) ;
  • Kim Won Jung (Department of Biological Sciences, Hannam University) ;
  • Lee Dong Hyuk (Department of Biological Sciences, Hannam University) ;
  • Kang Yong (Central Research Center, Green Cross Co.) ;
  • Sung Hark Mo (Central Research Center, Green Cross Co.) ;
  • Yoo Si Hyung (Blood Products Division, Biologics Evaluation Department Korea Food and Drug Administration) ;
  • Park Sue-Nie (Blood Products Division, Biologics Evaluation Department Korea Food and Drug Administration) ;
  • Kim In Seop (Department of Biological Sciences, Hannam University)
  • 발행 : 2005.09.01

초록

혈장분획제제 중 혈액응공인자제제와 일부 면역글로불린제제는 혈장에 존재하는 다양한 단백질로부터 유효한 단백성분만을 선택적으로 분리 정제하기 위해 크로마토그래피 방법을 사용하여 생산된다. 효율적인 세척(cleaning) 공정이 이루어지지 않는다면 크로마토그래피는 다양한 종류의 불순물뿐만 아니라 혈액 중 내재 또는 오염 가능성이 있는 위해인자가 오염될 가능성이 있다. 본 연구에서는 혈장분획제제 제조공정에 사용되는 크로마토그래피의 세척 공정에서 혈장유래 바이러스의 제거 및 불활화 공정의 검토 강화로 혈장분획제제의 안전성을 확보하기 위해 크로마토그래피 세척 검증 시스템을 구축하고자 하였다. 크로마토그래피 세척 공정 중 바이러스 제거 검증을 위해 혈장유래 바이러스 중 물리${\cdot}$화학적 처리에 가장 큰 저항성을 갖는 human parvovirus B19의 모델 바이러스의 porcine parvovirus(PPV)를 대상으로 real-time PCR 정량법을 확립하였다. PPV에 특이적인 primer를 선별하였으며 형광염료 SYBR Green I을 사용하여 PPV DNA를 정량하였다. 세포배양법에 의한 감염 역가와 비교한 결과 PCR 민감도는 1.5 $TCID_{50}/ml$이었다. 확립된 검증법의 신뢰성(reliability)을 보증하기 위해 실험법의 특이성(specificity), 재현성(reproducibility) 등을 검증하였다. 구축된 검증시스템을 thrombin 분리${\cdot}$정제를 위한 SP-Sepharose 양이온 크로마토그래피 공정과 factor VIII 분리${\cdot}$정제를 위한 Q-Sepharose 음이온 크로마토그래피 공정에 적용하여 크로마토그래피 세척 검증을 실시하고, 세척 검증 시스템의 적합성을 확인하였다.

Chromatography has now been used successfully to provide the requisite purity for human plasma-derived biop-harmaceuticals such as coagulation factors and immunoglobulins. Recently, increasing attention has been focused on establishing efficient cleaning procedures to prevent potential contamination by microorganisms as well as carry-over contamination from batch to batch. The purpose of present study was to develop a cleaning validation system for the assurance of virus removal and/or inactivation during chromatography process. In order to establish an assay system for the validation of virus clearance during chromatography cleaning process, a quantitative real-time PCR method for porcine parvovirus(PPV) was developed, since PPV, a model virus for human parvovirus B19, has a high resistance to a range of physico-chemical treatment. Specific primers for amplification of PPV DNA was selected, and PPV DNA was quantified by use of SYBR Green I. The sensitivity of the assay was calculated to be 1.5 $TCID_{50}/ml$. The established real-time PCR assay was successfully applied to the validation of PPV removal and cleaning during SP-Sepharose cation chromatography for thrombin purification and Q-Sepharose anion chromatography for factor VIII purification. The comparative results obtained by real-time PCR assay and infectivity titrations suggested that the real-time PCR assay could be a useful method for chromatography cleaning validation and that it could have an additive effect on the interpretation and evaluation of virus clearance during the virus removal process.

키워드

참고문헌

  1. 김인섭. 2003. 바이러스 불활화 공정에 대한 hepatitis A virus와 murine encephalomyocarditis virus의 민감도 비교. 미생물학회지 39, 242-247
  2. Active Pharmaceutical Ingredients Committee. 1999. Cleaning validation in active pharmaceutical ingredient manufacturing plants
  3. Arnauld, C., O. Legecy, Y. Laurian, R. Thiery, M. Denis, P. Blanchard, and A. Jestin. 1998. Development of a PCR-based method coupled with a microplate colorimetric assay for the detection of porcine parvovirus and application to diagnosis in piglet tissues and human plasma. Mol. Cell. Probes 12, 407-416 https://doi.org/10.1006/mcpr.1998.0205
  4. Boschetti, N. and A. Johnston. 2005. Virus elimination and validation. Methods Mol. Biol. 308, 209-220
  5. Bronrson, K., J. Brown, E. Hamilton, and K.E. Stein. 2003. Identification of protein A media performance attributes that can be monitored as surrogates for retrovirus clearance during extended re-use. J. Chromatogr. A. 989, 155-163 https://doi.org/10.1016/S0021-9673(02)01697-7
  6. Burgoyne, R.F., M.C. Priest, K.L. Roche, and G. Vella. 1993. Systematic development and validation of sanitization protocols for a chromatography system designed for biotherapeutics purification. J. Pharm. Biomed. Anal. 11, 1317-1325 https://doi.org/10.1016/0731-7085(93)80118-K
  7. Celis, P. and G. Silvester. 2004. European regulatory guidance on virus safety of recombinant proteins, monoclonal antibodies and plasma derived medicinal products. Dev. Biol. 118, 3-10
  8. Cuthbertson, B., K.G. Reid, and P.R. Foster. 1991. Viral contamination of human plasma and procedures for preventing virus transmission by plasma products, p. 385-435. In J.R. Harris (ed.), Blood separation and plasma fractionation. Willey-Liss Inc., New York
  9. Darling, A. 2002. Validation of biopharmaceutical purification process for virus clearance evaluation. Mol. Biotechnol. 21, 57-83 https://doi.org/10.1385/MB:21:1:057
  10. Farshid, M. 2004. Viral safety evaluation of plasma-derived therapeutic products. Dev. Biol. 118, 11-15
  11. Food and Drug Administration. 1993. Guide to inspection for validation of cleaning processes
  12. Horaud, F. 1991. Introductory remark: viral safety of biologicals. Dev. Biol. Stand. 75, 3-7
  13. Horowitz, B. 1990. Blood protein derivative viral safety: observations and analysis. Yale J. Med. 63, 361-369
  14. Huang, C., J.-J. Hung, C.-Y. Wu, and M.-S. Chien. 2004. Multiplex PCR for rapid detection of pseudorabies virus, porcine parvovirus and porcine circoviruses. Vet. Microbiol. 101, 209-214 https://doi.org/10.1016/j.vetmic.2004.04.007
  15. International Conference on Harmonisation. 1998. Guidance on viral safety evaluation of biotechnology products derived from cell lines of human or animal origin; availability. Federal Resister 63, 51074-51084
  16. Jeong, H.-S., J,-H. Shin, Y.-N. Park, J.-Y. Choi, Y.-L. Kim, B.-G. Kim, S.-R. Ryu, S.-Y. Baek, S.-H. Lee, and S.-N. Park. 2003. Development of real-time RT-PCR for evaluation of JEV clearance during purification of HPV type 16 L1 virus-like particles. Biologicals 31, 223-229 https://doi.org/10.1016/S1045-1056(03)00064-2
  17. Kim, I.S., Y.W. Choi, S.R. Lee, H.S. Woo, and S. Lee. 2001. Removal and inactivation of viruses during manufacture of a high purity antihemophilic factor VIII concentrate from human plasma. J. Microbiol. Biotechnol. 11, 497-503
  18. Kim, I.S., Y.W. Choi, S.R. Lee, M.S. Lee, K.H. Huh, and S. Lee. 2001. Removal and inactivation of hepatitis A virus during manufacture of a high purity antihemophilic factor VIII concentrate from human plasma. J. Microbiol. 39, 67-73
  19. Kim, I.S., Y.W. Choi, S.R. Lee, Y. Kang, K.M. Lee, D.H. Park, H.S. Woo, and S. Lee. 2002. Removal and inactivation of hepatitis A virus during manufacture of urokinase from human urine. Biotechnol. Bioprocess Eng. 7, 340-346 https://doi.org/10.1007/BF02933518
  20. Kim, J. and C. Chae. 2003. Multiplex nested PCR compared with in situ hybridization for the differentiation of porcine circoviruses and porcine parvovirus from pigs with postweaning multisystematic wasting syndrome. Can. J. Vet. Res. 67, 133-137
  21. Kim, J., D.U. Han, C. Choi, and C. Chae. 2003. Simultaneous detection and differentiation between porcine circovirus and porcine parvovirus in boar semen by multiplex seminested polymerase chain reaction. J. Vet. Med. Sci. 65, 741-744 https://doi.org/10.1292/jvms.65.741
  22. Kleinman, S. 1999. Residual risk of transfusion transmitted viral infections among seronegative donors: application of the incidence/ window period model. Dev. Biol. Stand. 102, 61-65
  23. Morrica, A., C. Nardini, A. Falbo, A. C. Bailey, and E. Bucci. 2003. Manufacturing process of Anti-thrombin III concentrate: viral safety validation studies and effect of column re-use on viral clearance. Biologicals 31, 1-9 https://doi.org/10.1016/S1045-1056(02)00067-2
  24. Mosley, J.W. and J. Rakela. 1999. Foundling viruses and transfusion medicine. Transfusion 39, 1041-1044 https://doi.org/10.1046/j.1537-2995.1999.39101041.x
  25. Parkman, P.D. 1996. Safety of biopharmaceuticals: a current perspective. Dev. Biol. Stand. 88, 5-7
  26. Prowse, C., C.A. Ludlam, and P.L. Yap. 1997. Human parvovirus B19 and blood products. Vox Sang. 72, 1-10 https://doi.org/10.1046/j.1423-0410.1997.00001.x
  27. Roberts, P. 1996. Virus safety of plasma products. Rev. Med. Virol. 6, 25-38 https://doi.org/10.1002/(SICI)1099-1654(199603)6:1<25::AID-RMV162>3.0.CO;2-2
  28. Saldanha, J. 2001. Validation and standardisation of nucleic acid amplification technology (NAT) assays for the detection of viral contamination of blood and blood products. J. Clin. Virol. 20, 7-13 https://doi.org/10.1016/S1386-6532(00)00149-9
  29. Schilt, U. 1989. Overview of viruses relevant to blood transfusion. Curr. Stud. Hematol. Blood Transf. 56, 1-8
  30. Sherwood, W.C. 1993. The significance of the blood-borne viruses: blood banking and transfusion medicine. Dev. Biol. Stand.81, 25-33
  31. Sofer, G. 2003. Current issues in validation of chromatography. Dev. Biol. 113, 61-64
  32. The European Agency for the Evaluation of Medicinal Products: Human Medicines Evaluation Unit. Committee for Proprietary Medicinal Products (CPMP). Note for guidance on plasma derived medicinal products (CPMP/BWP/269/95 rev2)
  33. Willkommen, H., I. Schmidt, and J. Lower. 1999. Safety issues for plasma derivatives and benefit from NAT testing. Biologicals 27, 325-331 https://doi.org/10.1006/biol.1999.0227