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Coordination Under Price Protection, Mid/End Life Returns, and
Quantity Discount for a Three-Level Supply Chain

Chang Hwan Lee*

B Abstract =

The coordination of a three-level supply chain consisting of a supplier, a retailer, and a-discount outlet (DCO)
is studied here. We assume that the product is sold in two consecutive periods : a Normal Sales Period (NSP) and
a subseauent Clearance Salvage Period (CSP). A benchmark case is studied initially in which the supply chain is coordi-
nated by a single agent. Thus, the supplier, the retailer, and the discount outlet design a common system that allows
centralized decision making about stocking quantities, markdown time schedules, and policies on disposing of leftovers
to deliver the greatest possible expected supply chain profit. Next, we consider a decentralized supply chain. Here,
decisions are made without coordination. The objective is to maximize an individual party's expected profits. The focus
of the study is on the following questions: what factors make the coordination an effective approach for the supply
chain? How do we coordinate the supply chain so as to maximize the supply chain joint expected profit? These and
other related study issues are explored in this paper.

Keyword : Subply Chain Coordination, Newsvendor Inventory Control Model
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1. Introduction

The importance of coordination in the supply
chain has recently been discussed in a consid-
erable body of literature. According to the main
argument, while the importance of achieving in-
tegration in the supply chain is generally well
recognized, designing a sophisticated integrated
system for application in the real world is an ar-
duous task. A more realistic route is to design
a coordination mechanism (including contractual
forms, compensation schemes, and side pay-
ments) that aligns the self-interests of in-
dividuals with the integrated interests of the
supply chain. For example, Jeuland and Shugan
[6] suggested using the quantity discount as a
mechanism for coordinating a bilateral monopoly
channel. Monahan [20] developed a model for es-
tablishing an optimal discount schedule from the
vendor’'s perspective, and showed a price dis-
count schedule with a single break point, achiev—-
ing the desired outcome for the vendor.

Monahan's work has been advanced by Lee
and Rosenblatt [16], Kohli and Park [10], Weng
[35], and Corbett and Groote [2], among others.
Parlar and Weng [22] described coordination be-
tween a firm's manufacturing and supply de-
partments. Weng [34] assumed demand to be
stochastic and analyzed channel coordination in
wholesale and retail prices. More recently, Lee,
et al. [17] discussed coordination by Wholesale
and Retail Price Protection. Wang and Gerchak
[32] analyzed a shelf-space dependent demand
inventory model, and proposed using a holding
cost subsidy as a coordination mechanism. Taylor
28] studied coordination strategies using tar-
get-level rebate policies in which a manufacturer
gives a performance- based rebate for a retailer

when sales exceed a target level.

The seminal work of Pasternack [23] showed
that a manufacturer’s returns policy can not only
induce a larger order through the risk sharing,
but also coordinate a supply chain to eliminate
the phenomenon of double marginalization and
generate the greatest joint profits for the supply
chain. Since then, extensions of Pasterneck’s ba-
sic models have been attempted in many di-
rections. These include extending the model to
consider price-sensitive demands [4, 8, 14, 19]
and comparing the returns policy with other co-
ordinating mechanisms (a markdown allowance
in Tsay [30] and a two-part tariff price only con-
tract in Lariviere [11]), among many others.
More recent work has attempted to include the
agents’ individual agendas and their attitudes to-
ward risk in the basic model [13, 31, 33]. Others
have studied the model under a non-Newsboy
framework, and showed that a returns policy
could stimulate retail competition to benefit the
manufacturer [21]. New approaches are also fre-
quently reported. For example, Tsay [29] studied
a Quantity Flexibility Contract in which a manu-
facturer fully rebates a portion of the leftovers
(up to the order quantity).. Donohue [3] discussed
a coordinating returns policy under the assump-
tion that the manufacturer can produce a second
production lot after the forecast update. Taylor
[27] analyzed a two-period model in which a
wholesale price protection policy is employed
with mid-life and end-life returns to coordinate
the supply chain. This two-returns model was
also formulated in Lee [15] to study the returns
policy in a Manufacturer-Retailer-Discount Qutlet
setting.

In this study, along a similar vein, we explore
coordination effects in a three-level supply chain



in which a supplier, acting as a channel captain
coordinates a retailer and a discount outlet.
Assume that a retailer sells a “short life-cycle
good” (e.g., fashion items) to possible consumers.
If the product cannot be sold after the first

" Normal Sale Period (NSP), the retailer has two

available options : (1) she can wholesale the
ownership of the leftovers to a downstream dis-
count outlet (DCO), which in turn will try to
clean out leftovers in a secondary Markdown
Sale Market at the following Clearance Salvage
Period (CSP), or (2) the retailer can return the
leftovers to the upstream supplier, who will then
salvage the buyback leftovers.

Under this problem setting we consider two
supply chain models-a centralized supply chain
and a decentralized supply chain. In the central-
ized supply chain the supplier-retailer-discount
outlet are coordinated to form an integrated
system, and jointly design an integrated order-
ing and leftovers salvage policy to deliver the
greatest possible expected supply chain profit.
Thus, the centralized supply chain acts as if the
system is managed by a single entity, and de-
signs the most beneficial policy for maximizing
the supply chain profit. Any policy different
from the one made by the centralized supply
chain, while potentially preferable to one party
or the other, will most likely lead to system
inefficiency. In the decentralized supply chain,
ordering and leftovers salvage decisions are
made without coordination. The purpose is to
address the following managerial questions :
(1) what factors, if any, make coordination an
effective approach? (2) What are the coordina—
tion strategies and policies that maximize the
supply chain joint expected profit? The ap-
proach used in this paper-comparing and ana-
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lyzing centralized-coordinated and decentral-
ized—uncoordinated supply chains-is widely ap-
plied in supply chain literatures (see, for exam-
ple, [15,22,29]). By comparing and analyzing
centralized and decentralized systems, we iden-
tify how is the significance of the improvement
delivered by centralizing the supply chain, when
supply chain efficiency can be improved by cen-
tralization, and how this can be achieved. Note
that although achieving centralization in the
supply chain is generally well recognized, in re-
al-world applications doing so will very likely
require enormous managerial efforts. The trade-~
off is therefore between the cost of maintaining
a complicated centralized system and the costly
consequence of operating a simple decentralized
system. Hence, when is it worthwhile to cen-
tralize the supply chain, and how should this be
proceed? In this work, we try to provide an-
swers to these questions.

This paper is structured as follows. In section
2, the problem description, assumptions, and no—-
tations are presented. In section 3, we examine
the integrated model and design an optimal poli-
cy for the benchmark case. In section 4, we con-
sider a decentralized model. In section 5, we
study coordination strategies for decentralized
systems. A brief discussion in section 6 com-

pletes the paper.

2. The Modeling Issues

The selling period consists of two sequential
and non-overlapping periods - a Normal Sales
Period (NSP) managed by the retailer, and a
Clearance Salvage Period (CSP) managed by a
markdown specialist. The chronology of events
for the model is described below :



20 o %

(1) First, the retailer decides order quantity based
on a forecast of the expected demand. The
expected demand is closely related to the
planned lengths of the NSP and CSP (opera-
tion time schedule); thus, to choose an opti-
mal order size the retailer needs to simulta-
neously plan the time schedule. This scenario
is similar to that in Bartmann and Beckmann
[1], in which a newsvendor simultaneously
chooses an optimal order quantity and a sell-
ing period. Notice that the estimated time
schedule (the lengths of the NSP and CSP)
1s information that is private to the retailer,
and will only be used by the retailer as an
internal aid to decisions on the quantity of
the order. It is not a firm commitment to the
discount outlet, and can be changed in the
later phase of the selling season. We assume
that the inventory is allowed to be re-
plenished only once.at the beginning of the
NSP. Wheri the random demand at any point
in time exceeds availability, selling oppor-
tunities are lost.

(2) At the end of NSP, the leftovers, if any, are
divided between the two agents - the Dis-
count QOutlet (DCO) and the supplier. A portion
of the leftovers are returned to and salvaged
by the supplier (through reuse or re-
manufacture), and the rest of the leftovers are
put into a markdown sale in the CSP by the
DCO. We assume that the supplier operates
a full returns policy [4, 8 19, 23] so that the re-
turned quantity is only bounded by the ordered
quantity. We also assume that the salvage ca-
pacity (markdown sale demands) in the DCO
is stochastic and that the supplier’s practice
of reusing or remanufacturing is nearly un-
limited and deterministic. This assumption is

an extension of the literature in which the sal-
vage capacity is often assumed to be de-
terministic and unlimited [30]. In reality, sal-
vage operations frequently involve the use of
a mixture of clearance salvage paths. For ex—
ample, retailers tend to liquidate leftovers in
specialized discount outlets (e.g., T] Maxx)
and/or through online business to consumer
(B2C) sites such as eBay or Amazon. com, or
to entrust leftover merchandise to a third party
logistic companies. Each of these paths has a
different consumer base, demand character-
istics, and distributions ; thus, salvage ca-
pacities are more likely to be limited and in
many cases probabilistic in nature. On the
other hand, supplier/manufacturers commonly
use a wide spectrum of technologies to recover
various raw materials, to remanufacture, and
to repair and reuse from leftovers [7,26] ;
thus, salvage processes are likely to be de-

terministic and to possess ample capabilities.

The following assumptions and notations are
used for modeling purposes. Demand in the NSP
and CSP is probabilistic depending on the dura—
tion of the sales period, and is assumed to be
comprised of two components. The first compo-
nent, representing the expected demand or the
location parameter of the random demand, is in-
fluenced by the duration of the sales period. The
second component, representing the probabilistic
scaling parameter of the random demand, is in-
dependent of the duration of the sales period. We
define r as the exogenously determined total life
cycle. We formulate length of the NSP (CSP) as
a fraction 0 <a <1 of z,ie, ar ((1—a)7). Let
Dy(@) and Dc(@) denote expected demands during

. the NSP and CSP, respectively. <Table 1> sum-
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marizes the additive and multiplicative two com-
ponents random demands formulated in our model.

{Table 1> Random Demand

Dy(a)=kya expected random demand of the
retailer in the NSP
Dc(a)=kc(1—a) expected random demand of the

DCO in the CSP

ky and k¢ are constant demand rates
Yand X are probabilistic scaling para-
meter of the random demands
Additive Multiplicative

NSP y+Dy(e), E(Y)=0
CSP x+Dc(a), E(X)=0

yDy(e), E(Y)=1
xDeo(a), E(X)=1

Because of its simplicity and flexibility, this

two—component approach has been used in vari-.

ous studies to formulate random demands (see
[4,12, 18, 24] for the price-dependent random de-
mand model, and [5] for random yield models).
<Table 2> lists the notations used in this paper.

(Table 2> List of Notations

x P the NSP retail price

* M the supplier's unit manufacturing
cost

* C the wholesale price paid by the
retailer to the supplier

* W the wholesale price of leftovers

paid by the DCO to the retailer
at the end of the NSP

* Vs the supplier's salvage values
*Vp the DCO’s markdown sale price
Q the retailer’'s order quantity

a the fraction of the retailer’s nor-

mal sales period (z=1—a) to
the total life cycle

f(y), and g(x) the probability densities of ¥, X

F(y) and G(x) the cumulative distribution func-
tions ( F(») and G(x) comple-
mentary CDF)

A subtraction (-) and division (/) in
additive and multiplicative model

v summation (+) and production
(x) in additive and multiplicative

model

1(Q, ) =max [ @~ (yVVDx(a)),0] the retailer’s
leftovers at the end of the NSP

6e[0,1] the retained portion of the
leftovers (§:=1—6 returned
leftovers)

q DCO’s optimum(maximum)
markdown sales quantity of
leftovers

We also use the following notations for modeling

purposes :

§:=QAD(a), 8: =(Q— dADN ), and
8,={8,:=08,8,:=0).

$:=hy—ke, and ¢(a@):=—akc+yky

¢: ={retained quantity=6I} N\ Dy(2) with
¢ =aADc(a) and & =IADc(a),

Note) * We assume that (1) P=Cz= M, (2) Vp=W,
and (3) Vs=< Vp

3. Centralized Supply Chain
Model

To provide an efficient benchmark, we consid-
er an integrated system in which the suppli-
er-retailer-DCO form a common system, and
jointly design an integrated ordering and left-
overs (@, 8) salvage policy to deliver the great-
est possible expected system profits. As in most
previous studies (e.g., [23]), we formulate the
problem as a Newsvendor inventory control
model (see Porteus [25] for a review) with

the objective of maximizing expected profit. De-

note (@, @y = GF@+ [ GVDY@VdF 4

2,(61(Q,a),a): = 0IG(¢) + f;{x\/Dc(a)}dc as

the expected sales units for the NSP and CSP.
The joint objective function of the supply chain
is given as follows :

max ¢ ,J1(Q, @) = PQK(Q, a) — MQ+
f(‘)émax osasl{ Vs0I+ VDQD(0|[( Q,a),)}dF, N

Note that in Pasternack’s [23] model, the left-



overs have no value to the retailer so she will
always want to return as many of them as possi-
ble to the supplier; thus, there is no need to de-
cide how much to return. If, however, as in our
model, the DCO can receive some salvage value
for the leftovers, and if the quantity that the DCO
can successfully salvage is stochastic, then the
DCO and the retailer clearly have another deci-
sion to make - namely, how much to return to
the supplier and how much to keep and salvage
themselves. Furthermore, with this assumed
setup it is more likely that the decision made by
the retailer and DCO will be based on the left-
overs they have and not what they originally
ordered. The objective function in (1) reveals
that the retailer and DCO need to base their
stocking decision on expected sales, which is a
function of how the transfer time (a) will be
determined. Thus, an optimal policy must solve
for an optimal integrated triplet ( ', ¢, ) (the
superscript “I” denotes an integrated system).
Proposition 1 provides a summary of the optimal

policies.

Proposition 1. (See Appendix 1 for the proof
for Proposition 1)

1.1. 17 is jointly concave with respect to (Q, 6, a).
Denote I =@,—(yNVDi(a). The optimal policies

are given as follows -

Cases={ when @,<q’ choose P,= (a,, 6,, @,)

when Q24 cheose Py={ 150 DTG o )
Where P denote optimal policies in which sub-
scripts i = 1:a flexible policy in which the quan-
tity of returns is a function of the quantity of
leftovers, and i=2:a “fixed” no returns policy.
For policy type 1, subscripts j=P: partial returns

(0<6<1), and j =N: no returns.

The optimdl triplet (@', &', 8°) is given as follows
(i) Retained leftovers (markdown quantity) sat-
isfy 10'=a'=Dc:VG 1=V, /Vp), and 6 w. 0,
=0.

(ii) As in <Table 2>, denote &: = Q\Dy(a),
8:=(Q— dAD\a), and §,={8,=6,8,-=0}.
¢ =ky—kc, and ¥ @) =—akc+yky,

Order quantities @'=Q; i=1,2 satisfy P—M=

J— 13 —
PR(&—w, with ©= VsF@)+ f}ivpc(g,)de

(iii) The length of the NSP @; i=1,2 satisfy
Additive :
PEyF(8) — Vg F(8 ) — VpkoF(8 X G(E,)

F )} - Vo [L(keG(E) + MG (EN)AF =0

Multiplicative -

Phy [ Ofde— v, jj "$(¢)aF
— Vpke fj{ [ 0{°xdc+ e Cq)}dF
-V, f} 5[ ke f '%dG+ kpy G( ;,)}sz 0

1.2 Ceteris paribus, the optimal solution : (i) ¢
increases as a or Vo increases, and Vs de-
creases, (ii) @1 increases as Vo, Vs, or P in-
creases, and M decreases. For the additive mod-
el Q) increases as «a increases if kx> ke (iii) @
increases as P increases, and Vo decreases. For

the additive model @ increases as Vs decreases

if ky> ke For the multiplicative model @ in-

creases as Vs decreases if kx(Q—a) > kca [

To provide an efficient benchmark, we assume
that a single agent coordinates the supply chain.
The optimal policy proposed in Proposition 1.1
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delivers the greatest possible expected supply
chain profit. Any policy different from the one
described in Proposition 1.1, while possibly pref-
erable to one party or the other, will lead to a
lower supply chain profit. It reveals that the opti-
mal retain policy is a retain up to policy. When
I g, that is, when the leftovers are more than
the targeted markdown sale quantity, the left-
overs are shared between the two parties with
retained quantity ¢ satisfying V.= VpG(&,)
(since ¢=DcVG ' (1= V,/Vp)). This involves
(1) the likelihood that the agent will clean out
the allocated leftovers ( G(_)) and (2) their sal-
vage values, Vpand Vs At the optimal solution,
the expected marginal revenue of retaining one
unit of leftovers (= VoG(&,)) must be identical
to the marginal cost of giving up the salvaging
of one unit of leftovers (= V). In other words,
it satisfies the classical optimality condition of
marginal revenue=marginal cost.

Proposition 1.2 (ii) shows that @ increases as
a increases if #~” k¢, That is, if the NSP has
a higher demand rate (£~ > £¢), @ increases as
the length of the NSP increases. On the other
hand, if CSP has a higher demand rate (kx> k¢),

then it is possible that @ will decrease in order -

to generate fewer leftovers as the markdown sale
period (‘@) decreases. These results help a man-
ager to determine a simultaneously optimal stock
level and selling period by explaining the rela-
tionship between these two decision variables.
We also see that the retained leftover quantity
(markdown quantity) ¢ increases as the mark-
down period (‘@) increases; thus, the longer the
planned markdown period the more leftover
items will be stocked to meet the markdown
clearance demand. Finally, we see that the return
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quantity (I—g) increases as the supplier’s sal-
vage value V; increases.

The findings discussed in this section enhance
understanding of the coordination mechanism in
which salvage operations are stochastic. Previ-
ous studies (for example, Tsay [30]) have pro—
posed an optimal strategy prescribing that sur-
plus merchandise be liquidated exclusively by
the party that can earn a higher salvage value
at the stage of clearance. This conclusion relies
on a crucial assumption: any amount of surplus
can be liquidated deterministically. In practice,
this assumption is questionable. For example, in
the retail industry the salvage operation fre-
quently involves markdown clearance operations
where demand is very likely a stochastic process.
We have shown that with the stochastic salvage
capacity assumption, a flexible returns policy in
which agents’ salvage values weighted by their
probabilities of cleaning out of leftovers are made
identical gives a greater system profit. This re-
sult is particularly intuitive when more and more
independent outlets (discount stores, e-based
stores, various reversed logistics paths) have re-
cently become available for liquidating channel
overstocks. According to our findings, the man-
agement not only needs to plan for an adequate
stock level at the beginning of the primary sell-
ing period, but also needs to design an optimal
mix of salvaging paths and responsibility shar-
ing for system overstocks.

4. Decentralized Optimal
Policies

In this section we consider a decentralized
system. We assume that the retailer determines
order quantity and time schedule ( QU¢, 2%) (the



superscript “UC” denotes an uncoordinated and
decentralized system), and that the DCO de-
termines the optimal markdown sales quantity
¢%, in order to individually maximize their ob-
jective functions. The DCO'’s objective function
after the end of the NSP, for a given (I1(Q, ),
is Hpdll, @)= VpR2,(dl, @) — wq. Denote Ls: =
W8I where 6I=1{q,1} as the retailer’s actualized
wholesale revenue from leftovers. In the decen-
tralized supply chain, the retailer and the DCO
will add/subtract the wholesale revenue (cost)
to/from their individual objective functions. The
retailer’s problem at the beginning of the NSP

is given as follows.
max g ,[T(Q, alg) = PRK(Q, alg) — CQ
¢
+ j;] max y Qs( WII(Q, a), a, Q)dF
Proposition 2 states the individually optimal
policies.

Proposition 2. (See Appendix 2) Assume that
g(x) has an increasing or constant failure rate
(ICFR) failure rate.

2.1 (1) is conocave in (Q, a, W) (8). Denote

Iy=max[Q,— (v VDx(a)),0] The optimal poli-

cles are given as follows -

Cases={ when Q;<g choose Py= (ay, 6,, Q,)

Ii<q P1N=‘(a1v01Nv Q)
Ivg Pp=A(ay,6,5Q)

when @,>¢ choose P;=

(i) DCO’s markdown quantity is a”“: =DVG™!
1—=w/Vp).

(ii) Denote @, = L 4,8, for [additive, multi-
plicative] and @ = | L& for [additive, mul-
tiplicative] models. The wholesale price of the

leftovers is a form of “Inverse Demand Price

Function: W= V,G(9)",

W, statisfies simultaneously if q(W)<1

{ First Order Condition W= Vp,e(£) e,
Inverse Demand Price W=V, G(¢,)

if (W) -

Wy =V G(£)
(iii) Let o:=g/G Q"=Q; i=1,2 satisfieswith
P~ C=PF(& — w; pith
0=V, [ BN = o(5)D )aF
(iv) The length of the NSPa;i=1,2 satisiesy

Additive : PRvF(O+ V) f.:ig( ¢)IdF

—{kcj:indF—l— ka_: WzdF]=0
Multiplicative :
3 3
Phy [ ydE=Vp [ a(tDe(t)taF

—{kcjj"Wl;qu+ kNj;_WzdF]=o.

2.2 Ceteris paribus, the optimal solution : (i) ¢"¢
increases as a or Vo increases, and Wi decreases.
(ii) @i increases as Vo, Wy, or P increases, and
C decreases. For the additive model @ in-
creases as a increases if kn>kc (iii) @ in-

creases as P increases and (Wi, W) decreases.

2.3 System Distortion : Denote AIKa): =311/ da
—08Ilz/da. Assume that the remaining decision
variables of the triplet (Q,a, 6), other than the
specified one, are identical between the central-

ized and decentralized systems.

(1) Additive model: Q<@ 6'()=6" if
V(2)W, and oY =(Qa’ if 02() dlKa)=

_ 3
— V. ¢F(E)—V, f:g(;’,)dddF— kc{ fo (Vp— W)

3
dF + fTs,VDG(gI)dF}- Here, ky— kc20=02



AlK a) ; thus, the decentralized system main-
tains a longer normal sales period.

(2) Multiplicative model © Q¥<@’, 6"(<)=6" if
V(2IW, and a"2()d’ if 0>() dll(a)=

3 3
V. [, #E)dF— Vs [ 6ia(€)d(E)dF ~ eV

‘ fos" f()g“xdeF + [ ; fo ElxdeF] B

In proposition 2, we assume a supply chain
composed of an independent retailer and a DCO
that are managed to selfish, rather than sys-
tem-wide, objectives. Proposition 2.1 reveals
that the objective function is concave if the den-
sity function g(x) has an increasing or constant
failure rate ICFR. While the proposition limits
the distribution, the ICFR class is broad enough
to include most of the distribution one would
choose to employ. For example, the normal and
the exponential are both relatively widely used
densities that are quite probable for formulating
random demands. Proposition 2.3 reveals two
sources of system distortions that lead to a sub-
optimal supply chain profit. We have discussed
in Proposition 1 that optimal supply chain per-
formance requires execution of a precise set of
strategies. Unfortunately, those actions are not
always in the best interest of individual members
of the supply chain. The supply chain members
are primarily concerned with optimizing their
own objectives, and this self-serving focus leads
to system distortions. Let us now discuss these

distortions in a more detailed fashion.

Distortion 1 : The retailer's local sale margin
(P—C) is less than the full system margin
( P— M) ; thus, this drives the retailer to order
less than provided for under the centralized poli—
cy (@< @Y.
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Distortion 2 : The system’s expected salvage

¢
revenues VD f 0 £2pdF (salyage revenue in DCO)

)
and Vs f 0(1 = @) dF (salvage revenue of supplier)

versus the retailer's local salvage revenue

Wf 059 s@F (wholesale revenue from leftovers) :
(i) The underage cost of the retained leftovers
(markdown sale quantity) in the centralized sys-
tem Vp— Vs is different from Vo~ Wi in the de-
centralized system ; thus, 6'#6%. (ii) The time
schedule in the decentralized system is made
based on analyzing the trade-offs regarding the
retailer’s normal sales revenue and the wholesale

revenue from leftovers ( Wf 059 sdFy thus, the
result is confined to optimizing the individual
benefit to the retailer. In the centralized system,
the trade-off analysis focuses on optimizing sys-—
tem~-wide profits. It considers the retailer’'s nor-
mal sale revenue, and the true system salvage

¢
revenue of both the DCO ( Vp f 0 204F) and the

L)
supplier ( VSIO(I_Q)dF).

Having analyzed system distortions, a manag-
er should then design a set of supply chain coor-
dinating contracts such that each firm's objective
becomes aligned with the coordinated supply
chain objective. We will discuss these coordinat-
ing contracts in the next section. Before we pro-
ceed to the next section, however, we will furmnish
a numerical experiment to provide a better un—
derstanding of the system distortions discussed
in this section.

.Let us now furnish a numerical example to ex—
plore and compare centralized and decentralized

policies as discussed in Propositions 1 and 2.



The following assumptions are used in the nu-

merical computation : (a) The demand is multi-
plicative with density functions g(x) and f(y)
exponeﬁtially distributed with f(y)=e " and
glx)=e % (b) The base parameters take the
following values : Vp=78, Vs=14, P=110, M
=20, C=30, #~=200, and #c=420.

Vb Variation. We first investigate the effects
of centralization on the expected profits by vary-
ing the markdown sale price V. We keep the
other parameters constant and change Vp from
$20 to $84 in increments of $4. Each scenario
(P=20, 24, -+, 84) is solved, and the Percentage
Increase Ratio, PIR= [ centrai/ 1 pecontrar— 11 100%,
is plotted as a function of Vp. For the centralized
policy, our parameter range covers three regions :
a'=1 when Vp <48 (the normal sale period
covers the entire life cycle), ¢'<1 and ¢'< @’
when 48 < Vp <68 (policy P1), and ¢’ > @' when
Vp>68 (policy P2). [Figure 1] shows that the
centralized policy outperforms the decenfralized
policy in all cases ; however, the benefits of in—
tegration increase as Vp increases. It illustrates
that PIR increases as Vo~ Wiand Wi~ Vs (Vs re-
mains unchanged) increase. It is seen that Vo= W
and Wi— Vs represent the differences in local
(the retailer’'s) and system salvage revenues
(Distortion 2). [Figure 1] also shows that, in gen-
eral, the two systems show similar deci-
sion—making trends ; however, the trends in the
decentralized system are less sensitive compare
to those in the centralized system. For example,
both order quantities show constant-decreasing-
increasing trends but the variation in the central-
ized system is much greater than that in the de-
centralized system. We also see that ¢’ = ¢"¢ and

' <a% in all cases, and that both ¢’ and ¢%¢
increase as o' and % decrease. Clearly, the
trends show that a retailer in the centralized sys-
tem maintains a shorter sales period so that the
leftovers can be moved to the DCO in a more
timely fashion in order to take advantage of a
more time-elastic market. We also identify that
the order quantity in the centralized system is
significantly larger than that in the decentralized
system due to Distortions 1 and 2.

kn Variation Here, the retailer’'s demand rate
varies from 150 to 260, in increments of 10, while
other parameters are kept constant. [Figure 2] il-
lustrates again that the two policies show similar
decision-making patterns ; however, the trends
revealed by the decentralized system are less
sensitive compared to those in the centralized
system. We see that PIR gradually dies down as
the differences in time schedule and markdown
quantity between the centralized and the decen-
tralized system diminish. In fact, the optimal
(g, @) policies in the two systems are identical,
and the only difference between them is limited

to order quantity QY < @ after Ay 2220.

Vs and C Variation. [Figure 3] illustrates how
the decentralized system’s ignorance of the sup-
plier's expected salvage revenue (Distortion 2)
can affect the system. We see that ( Vs=< 10) ¢/
initially remains unchanged as Vs increases,
since at this Vs range the DCO takes all of the
leftovers (¢ = Q). However, as Vs further in-
creases, the order quantity in the centralized
system sharply increases as the system salvage
revenue increases, whereas the decentralized
system remains unchanged. We see that this has
caused the PIR to sharply increase. We also see
that the normal sales period for the centralized
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system can be longer than that for the decentral-
ized system when the supplier's salvage revenue
is very high. That is, the system no longer feels
that it is profitable to keep the leftovers in the
DCO when the supplier's salvage revenue
becomes very lucrative.

Different results can be observed from the C
variation. Here, regardiess of the fact that the
decentralized system reacts sensitively to the C
variation, the centralized system completely ig-
nores the variation in the parameter. This phe-
nomenon is widely discussed in the literature as
the double marginalization effect. [Figure 1]
through [Figure 3]} reveal that centralized system
designs o are based on a system-wide view-
point; thus, o decreases as Vp increases [Figure
1], %k~ decreases, or ¢ increases ( ¢ increases as
Vs decreases). [Figure 4] reveals that in the de-
centralized system, the markdown quantity (g
increases as @ decreases => I decreases. Clearly,

these two trends reveal inconsistencies.

5. System Coordination
Strategies

In this section, we consider coordination strat—
egies that can align the individual policies with
the jointly optimal policies of supply chain. Our
scenario is given as follows. First, a decentral-
ized policy ( QY¢, a"C, ¢U°) is designed. Coordina-
tion strategies using several channel policies as
means are then designed to modify the terms of
trade so as to drive the individual system to
adopt the centralized policy (@' o’ ¢"). The
channel leader uses three types of well-known
channel policies for coordination. These are (1)
incremental quantity discount (QD), (2) rebate
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for the retained leftovers (RR), e.g., Markdown
Allowance [30] or Price Protection [17], and (3)
rebate for the returned leftovers, eg., end-life re-
turns (ER) and mid-life returns (MR). In addi-
tion to those in <Table 2>, <Table 3> lists the
notations used in the following sections.

{Table 3) List of Additional Notations

B minimum order quantity to qualify for

a quantity discount

unit discount wholesale price for all

units @ > B

B per unit compensation for the retained

leftovers given by the supplier. For ex-

ample, in Price Protection 8= 7(C— W),

0 <7<1{17], and in Markdown Allow-

ance 8= 7C and 0 <7p<1 (Tsay [30]).

mid-life (MR) and end-life (ER) per

unit buyback price of the leftovers

(returns value). We assume 7.< Vp

to ensure that the retailer will operate

a clearance salvage operation.

W= (Ws, Wg) Ws and Wr are wholesale prices of
leftovers paid by the DCO to supplier
and retailer

VoG ={VpG(£,), VpG(Ep} “Inverse Demand
Price”. VpG(£)=Vs when q=gq’

We also use the following notations :

X:=x+D(a) and ¥:=y+Dy(e).

A
Efe(V)= fo VOIdF wholesale revenue in which

(Q.a,0)=(Q%, 2%, 4") and wholesale
price= V

Ci C

rand 7.

In what follows, we present two coordination
strategies.

(1) The Centralized Coordination Strategy (CCS)
- In CCS, the supplier employs three supply
chain coordinating channel policies——QD,
MR, and ER. QD and MR are used to elimi-
nate distortions in (@, @), and ER is used to
eliminate distortion in ¢. The coordination
strategy works as follows. At the end of the
NSP, the supplier buys back (using mid-life
returns) all mid-life leftovers (I). The buy-
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back value ( ») is designed to be no less than
the retailer's wholesale price for the leftovers.
The supplier sells a portion of the buyback
leftovers (¢) to the DCO, charging a resale
value Ws (the subscript “S” denotes the sup-
ﬁﬁer) per unit, and salvages the rest of the
leftovers (I—g). At the end of the CSP, the
supplier again buys back any unsold end-life
leftovers from the DCO, paying 7. per unit.
(2) The Decentralized Coordination Strategy (DCS)
: In DCS, the supplier and the retailer work
together to coordinate the supply chain. The
supplier employs QD, MR, and RR to elimi-
nate distortions in (@, @), and the retailer
use ER to eliminate distortions in ¢. At the
end of the NSP, the retailer sells a portion
of the leftovers ¢ to the DCO, charging Wz
(the subscript “R” denotes the retailer) per
unit ; and the supplier buys back the rest of
the leftovers I—gq paying » per unit. The
supplier also pays the retailer compensation
B per unit for the retained leftovers (q). We
assume that We+B8=7 At the end of the
CSP, the retailer purchases back any unsold
end-life leftovers from the DCO, paying 7.

per unit.

The main difference between the Centralized
Coordination Strategy (CCS) and the Decentral-
ized Coordination Strategy (DCS) resides in the
supplier's willingness to control the wholesale
price of leftovers. In CCS, the supplier centralizes
the wholesale price-setting decision. Here, the
supplier interferes with the transaction between
the retailer and the DCO by buying back all of
the leftovers and setting the wholesale price
( W=Wjs) by herself. In DCS, the supplier de-
centralizes the price-setting decision and allows

the retailer to determine the wholesale price
( W= Wp).

Let o be less than and approximately equal to

¢ so that €(0F = VDfEdG =0 Denote Rs-«

(Rs_p) as compensation packages given by the
supplier to the retailer (DCO). We formulate the
objective function of the supplier with coordina-
tion strategies CCS and DCS as follows. Notice
that in CCS, the retailer earns {expected whole-

¢
sale revenue} © f s e()dF for the returned left-

¢
overs where f s &(0)dF i5 an additional incentive.

HS(Cd7 B; Vs ¥es WS)=(C_M)Q—RS_R
CCS E{24( W)

&
+ [ Vl-@dF—Rs_p+
0 DCS 0 )

Jecs [ ‘, ) ‘(B %)dGdF

where , and

DCS 0
RS—R= (C— Cd)(Q_B)

ccs: | (I g) + Vi C(L, ) dF
+ + f:VDT;( ¢NIdF+ f:e(y)dF

8 &
DCS fo (r(I— q) + Ba}dF + fa I dF*

The DCO’s and the retailer’s expected profits un-
der the two coordination strategies are given as

follows.
CCS E {Q4( W)
Hy =V Q,+Rs_p+Rp_p—
DCS E {24 W)},
Iy =PQRp—CQ+(C— Cy(Q—B)+Rg_p

CCS 0
—Rp_pt

DCS E {24 W)}, and

3 -
DCS fo r, fo (81— DG dF
Rp_p=

CCS 0



We see that in CCS the supplier interferes with
the transaction between the retailer and the DCO
by buying back all of the leftovers and setting
the wholesale price ( W;) by herself ; whereas in
DCS, the supplier lets the retailer determine Ws
Coordination strategies for CCS and DCS are
given in Proposition 3. We will focus on present—
ing coordination strategy for the additive model.

Proposition 3 (See Appendix 3 for the prodf)
. For a pair of arbitrarily decided wholesale pri-
ces M<C=P—w, gnd VpG(§ <W=V,—w,,
the supply chain can be coordinated by offering

3.1 Coordinating Strategies : (i) an end-life
return rebate

W= VpG(E)
0<7,= Ta™ G(Cq_) dra)=l
w— V,G(&)
reg=—G(§) = g(r )21 where
L

Vp—

w . S}
D.+G! . V
q(rel) ¢ { Vp—7a } ¢ {1 Vo 1,

(ii) A channel policy : Denote
¢ ¢
A1 a): =ch,,[ fo G(¢)dF + faG(é‘,)dF} _

Al a)
dF(9)
AI;( ) <

Vo F(8) + 41K &)
knFXE)
VsF(Nk.  AlKa)

C,,=M—T+ kr <C

r= Vst <C

CCS: PS(r, Cp):

I

C,=M+ C

y= f=

DCS: PP (r, Cy, B):

3.2 Expected Prdfits : Denote 0=&: = (P~-0O)
J[(P—M)<1,0<8,={Vp— WH{V,o— V,G(D}=1
(since VoG(§) <W), and EJ{Rs: =E (24 VG
(). Let Tsp and E 5} be the joint profits

for the Supplier-Retailer channel and the Leader
(CCS : Supplier, DCS : Retailer)-DCO channel
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respectively. We see that Hsg=(P—M)Q—

é )
P [ Ry + Vs [ FO)y+ EAR) gy E AT,

= [, v cwdr- [[owaddF 1 4 eio 11 be

a mutually agreeable share of the profise be—
tween the retailer and the supplier. Designing

(P=MXp—§)+A(w
c-C,

0<B=Q- - where

£ s
CCS:P(1 = p) [ F(s)dy— (r= V) [ F(y)dy
Ay = ’ :

DCS: (P~ )= B) [ Fdy =V, [ Fas

leads to the expected profits :
Retailer: ITy= pllgp+ (1= DE(2) + { e (= £}
=y
DCO:E{IIp} = E {11, 5}

Supplier: M= (1 — p) (Isp— E,{23} +{ lc)ggé’?,( (11— &)}

Pf:F(y)dy— rf;F(y)dy

Denotes CCS: m= : 3
P[ F()dy— Vs [ F(y)dy

(P-B) [FGay

and DCS: n= : 3
Pfo F(y)dy— stOF(y)dy .

It is seen that A(p) 20 Vees[0,7] and A(u)<0
Yuelr1]; thus, the supplier designs

(i) wel0,7) GHise=0<B<Q agnd
(iJpelr 1] H<u+A(p)/[(P-M)=0<B<Q
0]
Proposition 3 reveals that the coordination
strategies are not unique, and shows that a con-
tinuum of solution exists. Possible profit-sharing
arrangements differ in their divisions of the
channel profit. With coordinating channel poli-
cies, the supplier (in CCS or supplier-retailer in
DCS) can manipulate the channel followers.

Obviously, the channel leader will set ¢ as low
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as possible and capture as high a percentage as
possible of the channel profits. In another inter-
esting property, depending on which strategy is
used the channel leader’s profit ( £,{ (1~ )17, })
in the Leader-DCO channel can go to either the
supplier (CCS) or the retailer (DCS). Thus, who
will play what role is also an important issue in
the multi-lateral supply chain. Note, however,
that we have not taken into consideration the ex-
tra costs (e.g., transportation costs) that might

be incurred by the supplier in handling leftovers-

in CCS. As noted by Hal Upbin, CEO of Kellwood
Co, the suppliers are sometimes reluctant to take
anything back since “the cost of handling would
be absurd” [29]. It is seen that 1—8;=7./Vp;

thus, the profit share 1— &3 of the channel leader
(the retailer in DCS or supplier in CCS) increases
as 7. of the increases, and at the expense of the
DCO’s profit share. Similarly, C— C, increases

as C—M increases, and &1 decreases as C—M
increases; thus, the channel leader’s profit share
increases at the expense of the follower's as
C—M(C—C,) increases.

6. Discussion and Conclusion

This article further enhances understanding of
the importance of supply chain coordination by
examining a stochastic salvage capacity news-
vendor inventory model. Previous research
development relies on a crucial assumption :
any amount of surplus can be liquidated deter-
ministically. In practice, this assumption is
questionable. For example, in the retail industry
the salvage operation frequently involves mark-
down clearance operations where demand is very
likely a stochastic process. We have shown that

with the stochastic salvage capacity assumption,
a partial returns policy in which agents’ salvage
values, weighted by their probabilities of the
cleanout of leftovers, are made identical resuits
in a greater system profit.

Our second research topic has focused on sys-
tem distortions in the given problem setting. We
have shown that, in general, the distortions stem
from decisions made by agents based on the con-
cept of decentralized revenue or cost structures.
As a result, the decentralized system usually (1)
orders less, (2) keeps a longer normal sales pe-
riod, and (3) allocates more leftovers to the
supplier.

We have furnished a numerical experiment to
enhance understanding of the research findings.
We first investigate the effects of centralization
on the expected profits by varying the markdown
sale price V. We show that the centralized sys-
tem outperforms the decentralized system in all
cases; however, the benefits of integration in-
crease as Vp increases. We also show that in
general, the two systems show similar deci-
sion-making trends ; however, the trends in the
decentralized system are less sensitive compare
to those in the centralized system. For example,
our numerical experiment reveals that the cen-
tralized system maintains a shorter sales period
so that the leftovers can be moved to the DCO
in a more timely fashion in order to take advant-
age of a more time-elastic market. A same phe-
nomenon can also be observed from varying the
retailer's demand rate #w.

Our numerical experiment also reveals that
when the supply chain is coordinated, the system
operates as if the supply chain is operating a
common system. Internal transactions that do

‘not contribute to increasing the supply chain



PR g A, g A3} Fadql

joint profit are eliminated completely ; therefore,
the internal parameter ( C) has no impact on the
determination of jointly optimal policies. The
centralized supply chain completely ignores the
variation in C. This phenomenon is widely dis-
bussed in the literature as the double margin-
alization effect. Finally, our numerical experi—
ment reveals that the decentfalized supply chain
frequently shows inconsistency in decision mak-
ing. For example, in the decentralized system, we
frequently observed that the markdown quantity
increases as the order @ decreases. Clearly,
these two trends reveal inconsistencies.

Our third research topic studies how to cope
with system distortions in decentralized policies,
we have considered two coordination strategies
for aligning the individually optimal policies. In
the Centralized Coordination Strategy (CCS), the
supplier buys back all leftovers from the retailer,
and sells a portion of them to the DCO. The sup-
plier uses quantity discount, mid-life returns and
end-life returns to eliminate distortions. In the
Decentralized Coordination Strategy (DCS), mem-
bers in supply chain need mechanisms to work
together to secure better joint performance. Here,
quantity discount, mid-life returns, and rebates
for retained leftovers (e.g., a markdown allow-
ance or wholesale price protection) are used as
coordination mechanisms to eliminate distor—
tions. The retailer also uses an end-life returns
policy to eliminate distortions involving the poli-
cy for disposing of leftovers. We have shown
that the profit share of channel leader increases
at the expense of those of followers when the
value of the channel rebates increases.

In the present study, we set out to analyze the
possibility of designing a contract to coordinate
a threé—level supply chain. In our view, the anal-
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ysis has some limitations. First, our research is

done in a much simplified setting by considering
a supplier with a sole retailer/DCO case. In dis-
cussing the topic, the inclusion of multiple-heter—
ogeneous retailers/DCOs with different demand
distributions might provide more meaningful
results. Recent work (for example, Webster and
Weng [33]) has shown that using a returns policy
to coordinate a supply chain frequently results
in a higher returns cost ; thus, when demand is
lower than expected, coordination often leads to
a manufacturer’s resulting realized profit being
lower than that in the no returns case. Future
research should examine the agent’s attitude to-
ward risk and its consequences. Finally, our re-
search does not allow us to study the possibility
of a situation involving multiple markdown
periods. Generally, in a real-world application, a
markdown operation may consist of more than
one discount period. The multiple markdown pe-
riod problem has been studied by Khouja [9] on
a single company level. Future work on a pro-
gressive multiperiod markdown model could cer-
tainly shed further light on the topic. These limi-
tations indicate some of the possible extensions

to a future study.
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Appendix 1 Proof for Proposition 1 :

Let IT} = dll(x)/dx (eg., M, =3ll/dc ), B, = lg.5, ], and @, =[1.¢,] for [additive, multiplicative]

model.

Proof for Proposition 1.1 : (i) Sufficiency condition: We will show the proof for policy P,.
Mg =- ug(le_’\Dc}D: <0= [ is concave in g. Let T:=TI(Q,,8") where

16" =D, v G'(1-V,/v,). For [additive, multiplicative] models denote

(1) [2 =-V,8(,)<0, Ac=-V,g(, )/D. <0],

@2 [¢, =k, >0, ¢, =&, >0],

@) (A, ==(P-V,)f€)<0, 4, ==(P-V,)f€)/D, <0], and

@) (p:=k, k., ¢:=—¢ k. +yk, <0l '

{Proof : Denote ¢:=1I/D. and &:=yk,/k.20. ¢<0 if ¢2g, and ¢ ¢ =-Dc'¢ ;hence,
¢'e6>5)20, ¢'u(6<3)S0, and ¢4@)=0. gl@>0)2¢(@=0) if ¢l@=0)=Z since
¢'06>5)20 and ¢(@>0)<gl@=0) if gle=0)<¢ since 6'w(6 <5 )<0 ; thus, only one of ¢>&
(6'20)or ¢<¢ (6" £0) can apply. However, ¢ &« as ¢ — 1; hence, it must be that ¢ >¢g

and $<0 Veaelo1].)

d ” ¢ v ¢
We see that Mg = Avky’ +_L Ac9’dF <0 Mg, =-4,9, “_L Ac9dF | and Tgg =4, +_L AcdF <0

¢ ¢ ) g 2
Thus, Moallgq ~[M50f —avb>0, where b= AcdFx [ Ao dF_(.[s lCMF) 20 (py

¢ 2
Cauchy-Shwarz's inequality), and @=| A,Ac (¢, —9)dF >0, and the objective function
0

I:=T1(Q,e,0" )is concave in (Q,)

(it) Optimal Policies : We will show the derivation for the additive model. The multiplicative model
can be shown similarly. {Lemma 1: 0, <q= Q,, <q and Q, 2q = Q,, 2q: Define [, = PF(¢)- o, .
Proposition 1.1 states that O, satisfies P—M =T, ;s are the strictly increasing functions of Q,
and p_pis a constant ; thus, I, >T, = Q, <@, . For an arbitrary ¢ >0 and Q, VD(—;(E)Y /\DC)Z
V,G(IAD, )= T,, 2T, ; thus, (R1):Q, 2 Q,,, and @, <g= Q,, <q¢. Assume otherwise that Q 24
then, via (R1) one of the following two cases can apply : (Case 1) @, 292 Q,, or (Case 2):
0, 20,, > q. Assume first that (Case 1) applies. Since V,GOI,AD. )=V, VI, >q and Q,, <q=

V, <V,G(0,, AD,), V,G@I,AD. )< V,G(QyAD.) <V,G(I,, AD;)= T, >T,, = 0, < Q,,, which
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contradicts (R1). Thus, we conclude (Case 2).} The first derivative of the objective function reveals

M/6=0= V,-V,G (9—1 AD, )= 0. The optimal policy for disposing of leftovers is derived from
the following four observed cases. Situation S1: Q, 2¢= Q,, 2q (see Lemma 1). S1 consists of
two sub-cases. (S1-1):1<g=V,-V,G(IAD.)<0= 0I1/08 <0 V@e [0,1] Together, 3°I1/96° =
-V, g(I§ AD, ):D, <0 and 9dI1/08 <0 imply that y is decreasing and concave; thus, optimalg® =g¢.
(S1-2):1>q then 6 eo1] satisfies 9I1/d8 =0. Situation S2: Q<g= V,<V,G(QAD, )=
aI1/d8 < 0 regardless of leftovers; thus 8" =6,, =0. The optimal policies for (Q, 0t} are derived for

cases 51 and S2 by substituting the optimal g* to the necessary conditions d11/da =0 and 911/3Q =0.

O
Proof for Proposition 1.2 :

In the [multiplicative, additive] models :
(a) [9g/0a = —k.c, <0, 3q/dcx = k. <0],

(b) [3g/aV, = =D, [V, gl,)<0, 8g/av, = -1/V,g(c,)< 0], and
(c) [9q/oV, = D, VS/VDZg(gq)>O, 9g/oV, = VS/VDZg(gq)> 0]. Thus, ¢’ increases as g or V, in-

creases, and V, decreases. The other cases in (ii) and (iii) can be derived in a similar manner.[]

Appendix 2. Proof for Proposition 2.

Proof for Proposition 2.1 : The optimal policies can be derived in a similar manner to that in

Proposition 1.1. We will show the proof of sufficiency condition. The policy P,.

T,gg =—V,2{I8 AD_J5, <0=> 1, is concave in §. Define p:=g/G as the failure rate, and for

the [additive, multiplicative] model let
(1) I:A’N = _(P_VD )f(§)<0 7A’N :=_(P_VD )f(é)/DN <0],
) [4, :=“Vu(g;(€:)1+28), Ae ==V, (g,g(gl X, +28)/DC 1. Herey(g;(GI)I+2g)

=6 N-p, 120 and (6, %, +28) 66, -6, X, Ve 20, if g(x) has an in-

creasing failure rate (IFR).

£ ” £ 3
We see that Tjqq =4y + [, CdF | Migq =4y, = [[ Ac0dF | and M7q, =Au9,’ + [ Ac9*dF <0,

¢ £ £ ’
Therefore, oM %qq ~[M5eq ) =a+b20, where b=J; lCdFXJ; Acp*dF —(L ACWF) 20 1,y

: ,
Cauchy-Swarz’s inequality) and @ =J; Ay @y —9) dF >0 ; thus, the objective function 1, is con-

cave in (Q, a) ]



Proof for Proposition 2.2 : (i) In the [multiplicative, additive] models :
(a) [9g/oa = ~k .G, <0,dq/d0cc = —k, <0],

(b) [3q/aW, = - D, /V,8(s,)< 0 dg/aw, = -1/V,¢lc, )< 0],

(c) and [9g/0V, = DCWI/VDZg(gq)> 0, 2g/0V, = W,/V,,Zg(gq )>0] thus, ¢' increases as & orV,

increases, and V, decreases.

¢ = 2
(i) 9Q,/oV, = —L G, N-plg, B, }1F/(82H/8Q ). Proposition 2.1 reveals that

{Wl =Vv,8, ),

g=D.vG(1-W,JV,)=W,=V,G,) =>1-pl, ), =0.

0=1-pl, P, )<0-pk,W,), since ¢>I and g(x) has an IFR or p’>0 Vye[8,&]; thus,

80, /0V, 2 0. The results for other cases in (i) and (iil) can be demonstrated in a similar manner.

D
Proof for Proposition 2.3 : The results are obtained by analyzing oT1/d¢ —dI1,/de, dI1/30 — 911, /98 ,
and oI1/9Q —dI1,/dQ . 0

Appendix 3 Proof for Proposition 3 :

Proof for Proposition CCS : (i)Coordinating q : Since oI1/06 —0I1, /08 =W~V - rGlg,), when
q(rd,WS )S I, designing r, = W, -v, )/ G(g,,) coordinates the supply chain. On the other hand, when
q(rel,Ws }>1 the supply chain can be coordinated by equating g, \W,)=1 = 1, = (WS -v,G(g, ))

/G(s,).

(it) Coordinating Q : Upon substituting e)=V, r ¥dGz0 v yels,&], amj/ag-omn,/ Q=
C,-M —(r-V,)F(§) ; thus, C, =M +(r—V,)F(§) coordinates the distortion in order quantity.

(iii) Coordinating o : 8I1/d0 311, /da = — ATl{@ )+ (r—V, YF (&) ; thus, r =V, + ATl )/¢F(6) coor-
dinates the distortion in « . (jv) The profit expected by the supplier, retailer, and the DCO upon sub-

stituting the coordinating channel policies, is given as follows.

(1) Supplier-DCO : The supplier incurs buyback cost E ,{Qs }; thus, the expected profit for the suppli-
3 ~ 3

er-DCO channel is E, {l,, }= J; v, %I —J.o G(x)dx}’F ‘Ey{gs}. This implies that

E )= [V -GEB - [ 6 = [v, G601~ [ Gl pr
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The DCO’s individual expected profit upon substituting the coordination strategy is given by
3 — s
E A Y= [V, W, BT -0, -1, )] Gl jr

= f {wﬁl —[VD W V,Gl))r G(x)dx}dF

G) p

- [ e ¥.06PT-v, [olhepr = £ £} Ly 5 1=k fi-¢ T, )
(2) Denote 1, =TI, -E,{@,}-(C-C,Xe-B). i, = ®~C-P[ F)y+r[FOGMy | and
N, £} (P-MO-P[ FOMy+V, [FOo)y
() p<m= AQ@)20= (w=¢ X1, -E, {0, J21,; thus, equating ¢, =p= B=0-A@)/(C
~C,)<Q leads to the retailer’s share of the joint profit 11, -E, {@ }=¢ {1, -E {.}.
() u>7= Ap)<o= w=¢ xfn, -£f <, We see thatufl, -z {0, }-1i, =
(P-MYu—-C)+A(u). Here, {, <cu+A)(P-M) = P-MXu-C)+Au)>0= B<Q, and
gizp+{al)-olc-c, /(P-M)= (P-M)u-¢, )+Alu)s0(c-C,)= 0<B.

Proof for Proposition DCS : The proof for the coordination strategies is similar to that in CCS.



