Preparation of Amino Acid Copolymers/water-insoluble Drug Nanoparticles: Polymer Properties and Processing Variables

아미노산 공중합체/난용성 약물 나노입자의 제조: 고분자 특성 및 가공변수

  • Yoo Ji Youn (Department of Chemical Engineering Materials Science, Chung-Ang University) ;
  • Lee Soo-Jeong (School of Materials Science and Engineering, Seoul National University) ;
  • Ahn Cheol-Hee (School of Materials Science and Engineering, Seoul National University) ;
  • Choi Ji-Yeun (Department of Nano Science and Technology, Sejong University) ;
  • Lee Jonghwi (Department of Chemical Engineering Materials Science, Chung-Ang University)
  • 유지연 (중앙대학교 공과대학 화학신소재공학부) ;
  • 이수정 (서울대학교 공과대학 재료공학부) ;
  • 안철희 (서울대학교 공과대학 재료공학부) ;
  • 최지연 (세종대학교 공과대학 나노공학과) ;
  • 이종휘 (중앙대학교 공과대학 화학신소재공학부)
  • Published : 2005.09.01

Abstract

An increase in the surface area of drugs by reducing particle sizes from microns to nanometers has been known as an efficient method to improve the bioavailability of water-insoluble drugs. To prevent drug nanoparticles from aggregation during the processes of drug formulation, a limited number of pharmaceutical inactive ingredients such as hydroxypropyl cellulose has been employed as stabilizers or dispersants. In this study, copolymers of hydrophilic and hydrophobic amino acids were synthesized by the ring opening polymerization of their N-carboxyanhydride monomers and evaluated as novel candidates to stabilize the nanoparticles of a water insoluble drug, naproxen. Naproxen nanoparticles stabilized by synthesized amino acid copolymers were successfully prepared in the size of $200\~500nm$ in 60 min by a wet comminution process. Particle size analysis showed that the effective stabilization performance of copolymers required the hydrophobic moiety content to be higher than $10 mol\%$. However, the molecular weight and morphology of copolymers was not the critical parameters in determining the particle size reduction. Their particle size was found to be stable up to 14 days without significant aggregation.

입자크기 감소에 의한 약물의 표면적 증가는 불용성 약물의 생체이용률 즉, 약물의 흡수량과 속도를 향상시켜 주는 효과적인 방법으로 알려져 있다. 그 동안 약물 나노제제 공정 동안 약물 나노입자가 응집되는 것을 방지하기 위한 안정제 또는 분산제로서 한정된 수의 부형제만 사용되어 공정의 개선에 제약이 되었다. 본 연구에서는 N-카복시안하이드라이드 단량체의 개환 중합으로 합성한 소수성과 친수성을 가진 아미노산 공중합체가 불용성 약물인 나프록센 나노입자를 안정화시키기 위한 새로운 물질로서 사용되었다. 합성된 아미노산 공중합체로 안정화된 나프록센 나노입자는 60분간 습식 분쇄 공정에 의해 $200\~500nm$의 크기로 제조되었고, 공중합체의 소수성 부분이 적어도 $10 mol\%$ 이상이어야 효과적인 크기 감소를 볼 수 있으며, 공중합체의 모폴로지와 분자량은 입자 크기 감소를 결정하는 중요 요소가 아니었다. 또한 제조된 약물 나노입자 크기는 눈에 띄는 응집없이 14일까지 안정한 것을 알 수 있었다.

Keywords

References

  1. R. W. Lee, J. Mckhane, J. M. Shaw, and R. W. Wood, 'Particle size reduction', in Water-inslouble Drug Formation, R. Liu, Editor, Interpharm Press, Buffalo Grove, 2000
  2. A. T. M. Serajuddin, J. Pharm. Sci., 88, 1058 (1999) https://doi.org/10.1021/js980403l
  3. G. G. Liversidge and P. Conzention, Int. J. Pharm., 125, 309 (1995) https://doi.org/10.1016/0378-5173(95)00148-C
  4. G. G. Liversidge and K. Cundy, Int. J. Pharm., 125, 91 (1995) https://doi.org/10.1016/0378-5173(95)00122-Y
  5. E. Merisko-Liversidge, P. Sarpotdor, J. Bruno, S. Hajj, L. Wei, N. Peltier, J. Rake, J. M. Shaw, S. Pugh, L. Pollin, J. Jones, T Corbett, E. Cooper, and G. G. Liversidge, Pharm. Res., 13, 272 (1996) https://doi.org/10.1023/A:1016051316815
  6. M. J. Grau, O. Kayser, and R. H. Muller, Int. J. Pharm., 196, 155 (2000) https://doi.org/10.1016/S0378-5173(99)00411-1
  7. T. Yamada, N. Saito, and T. Imai, Chem. Pharm. Bull., 47, 1311 (1999) https://doi.org/10.1248/cpb.47.1311
  8. J. Y. Zheng and H. W. Bosch, Drug Dev. Ind. Pharm., 23, 1087 (1997) https://doi.org/10.3109/03639049709150497
  9. J. Lee, J. Pharm. Sci., 92, 2057 (2003) https://doi.org/10.1002/jps.10311
  10. K. D. Berglund, T. M. Przybycien, and R. D. Tilton, Langmuir, 19, 2705 (2003) https://doi.org/10.1021/la026429g
  11. K. D. Berglund, T. M. Przybycien, and R. D. Tilton, Langmuir, 19, 2714 (2003) https://doi.org/10.1021/la026430f
  12. H. Evertsson and S. Nilsson, Macromolecules, 30, 2377 (1997) https://doi.org/10.1021/ma961552y
  13. J. R. Hernandez and H-A. Klok, J. Polym. Sci.; Part A: Polym. Chem., 41, 1167 (2003) https://doi.org/10.1002/pola.10660
  14. Y. Iizuka, C. Uchida, K. Wakamatsu, and M. Oya, Bull. Chem. Soc. Jpn., 66, 1269 (1993) https://doi.org/10.1246/bcsj.66.993
  15. C. H. Chiang and M. K. Yeh, Curr. Pharm. Biotechnol., 4, 323 (2003) https://doi.org/10.2174/1389201033489739
  16. T. J. Deming, Nature, 390, 386 (1997) https://doi.org/10.1038/37084
  17. T. J. Deming, Adv. Drug Deliv. Rev., 54, 1145 (2002) https://doi.org/10.1016/S0169-409X(02)00062-5
  18. A. P. Nowak, V. Breedveld, L. Pakstis, B. Ozbas, D. J. Pine, D. Pochan, and T J. Deming, Nature, 417, 424 (2002) https://doi.org/10.1038/417424a
  19. S. S. Santosoa, S. Vauthey, and S. Zhang, Current Opin. Colloid Interf. Sci., 7, 262 (2002) https://doi.org/10.1016/S1359-0294(02)00072-9
  20. R. Szabo, G. Mezo, F. Hudecz, and L. Kohidai, J. Bioactive Compatible Polymers, 17, 399 (2002) https://doi.org/10.1177/088391102031640
  21. I. -K. Kang, D. -R. Kwon, and Y. K. Sung, Polymer(Korea), 15, 481(1991)
  22. C. -S. Cho, J. -W. Park, J. -K. Kwon, B. -W. Jo, K. -C. Lee, K. -Y. Kim, and Y. -K. Sung, Polymer(Korea), 15, 27 (1991)
  23. T. J. Deming, J. Polym. Sci., Polym. Chem., 38, 3011 (2000) https://doi.org/10.1002/1099-0518(20000901)38:17<3011::AID-POLA10>3.0.CO;2-Z
  24. T. J. Deming, Adv. Mater., 9, 299 (1997) https://doi.org/10.1002/adma.19970091219
  25. H. R. Kricheldorf, $\alpha$-Amino Acid N-carboxyanhydrides, and Related Heterocycles, Springer-Verlag, Berlin, 1987
  26. W. N. E. van Dijk-Wolthuis, L. van de Water, P. van de Wetering, M. van Steenbergen, J. J. Kettenes-van den Bosch, W. Schuyl, and W. E. Hennink, Macromol. Chem. Phys., 198, 3893 (1997) https://doi.org/10.1002/macp.1997.021981211
  27. W. H. Daly and D. Poche, Tetrahedron Lett., 29, 5859 (1988) https://doi.org/10.1016/S0040-4039(00)82209-1
  28. M. K. Jang, C. Y. Choi, and W. S. Kim, Polymer(Korea), 28, 291 (2004)
  29. Y. S. Park, H. D. Han, and S. W. Hong, Polymer(Korea), 28, 59 (2004)