Preparation of Gradient Polymer Surface and Their Pluripotent Biomedical Applications

고분자 구배표면 제조와 생체의료학적 응용

  • Lee, Hai-Bang (Nanobiomaterials Laboratory, Korea Research Institute of Chemical Technology) ;
  • Kim, Moon-Suk (Nanobiomaterials Laboratory, Korea Research Institute of Chemical Technology) ;
  • Cho, Young-Ho (Department of Advanced Organic Materials Engineering, Chonbuk National University) ;
  • Khang, Gil-Son (Department of Advanced Organic Materials Engineering, Chonbuk National University) ;
  • Lee, Jin-Ho (Department of Macromoloecular Science, Hannam University)
  • 이해방 (한국화학연구원 나노생체재료연구팀) ;
  • 김문석 (한국화학연구원 나노생체재료연구팀) ;
  • 조영호 (전북대학교 유기신물질공학과) ;
  • 강길선 (전북대학교 유기신물질공학과) ;
  • 이진호 (한남대학교 정보신소재공학과)
  • Published : 2005.09.01

Abstract

Over last three decades, various biomaterials has been developed and applied in the biomedical market. The practical utilization of biomaterials depends on the study about an appropriate physical and biological response of biomaterials. The modification of biomaterials using various surface treatment methods has recently become an interesting topic in the field of surface engineering. A padient surface is the surface on which a gradually varying chemical composition exists along its length. A large number of research groups have been focused on the preparation of gradient surfaces. Such gradient surface is of particular interest for basic and applied studies of the interactions between biological species and surfaces since the effect of a selected property like wettability or chemical composition can be examined in a single experiment on one surface. The present review focuses on the preparation and characterization of various gradient surfaces, and their interactions with biological species.

지난 30년에 걸쳐 다양한 생체재료가 개발되어져 생체의료 시장에 응용되고 있다. 생물의학 분야에서 생체재료의 실질적인 활용은 생체적합성으로 언급된 생체재료에 알맞은 물리적$\cdot$생물학적 반응에 대한 연구에 의존하고 있다. 다양한 표면 처리 방법을 통한 생체재료의 개질은 표면 공학 분야에서 최근에 흥미로운 주제로 떠오르고 있다. 대다수의 연구그룹들은 최근 재료의 길이에 따라 점차적으로 다양한 화학적 조성물들이 표면에 존재하게 하는 실험에 관해 초점을 모으고 있다. 이러한 "구배표면" 생물학적 기종과 재료표면 사이의 상호작용에 대한 기초적인 응용 연구에 특별한 흥미를 보여준다. 본 총설은 한 가지 시료 위에 다양한 구배표면을 만드는 실험과 특성파악, 그리고 이들 재료표면과 생물학적 기종들과의 상호작용 규명에 초점을 두었다.

Keywords

References

  1. http://en.wikipedia.org/wiki/Biomaterial, www.biology-online.orgldictionary/biomaterials, http://www.lexicon-biology.com/biology/definition_29.html
  2. A. G. Gristina, Science, 237, 1588 (1987) https://doi.org/10.1126/science.3629258
  3. L. Vroman, Lancaster, 81 (1983)
  4. B. M. Gumbiner, Cell, 84, 345 (1996) https://doi.org/10.1016/S0092-8674(00)81279-9
  5. J. H. Lee, J. W. Park, and H. B. Lee, Biomaterials, 12,443 (1991) https://doi.org/10.1016/0142-9612(91)90140-6
  6. J. M. Schakenraad, H. J. Busscher, C. R. H. Wildevuur, and J. Arends, J. Biomed. Mater. Res., 20, 773 (1986) https://doi.org/10.1002/jbm.820200609
  7. Y. Tamada and Y.Ikada, J. Colloid Interf. Sci., 155, 334 (1993) https://doi.org/10.1006/jcis.1993.1044
  8. P. B. van Wachem, T. Beugeling, J. Feijen, A. Bantjes, J. P. Detmaers, and W. G. van Aken, Biomaterials, 6, 403 (1985) https://doi.org/10.1016/0142-9612(85)90101-2
  9. D. R. Lu and K.Park, J. Colloid Interf. Sci., 144, 271 (1991) https://doi.org/10.1016/0021-9797(91)90258-A
  10. S. D. Johnson, J. M. Anderson, and R. E. Marchant, J. Biomed. Mater. Res., 26,915 (1992)
  11. S. Joschek, B. Nies, R. G. Krotz, and A. Opferich, Biomaterials, 21,1645 (2000) https://doi.org/10.1016/S0142-9612(00)00036-3
  12. E. Oh and P. E. Luner, Int. J. Pharm., 188, 203 (1999) https://doi.org/10.1016/S0378-5173(99)00224-0
  13. J. D. Andrade, L. M. Smith, and D. E. Gregonis, 'The contact angle and interface energetics', in Surface and Interfacial Aspects of Biomedical Polymers, J. D. Andrade, Editor, Plenum Press, New York, Vol. 1, pp. 249 (1985)
  14. L. Weiss, Int. Rev. Cytol., 9, 187 (1960) https://doi.org/10.1016/S0074-7696(08)62747-3
  15. D. H. Kaelble and J. Moacanin, Polymer, 18, 475 (1977) https://doi.org/10.1016/0032-3861(77)90164-1
  16. R. E. Baier, A. E. Meyer, J. R. Natiella, R. R. Natiella, and J. M. Carter, J. Biomed. Mater. Res., 18, 337 (1984) https://doi.org/10.1002/jbm.820180404
  17. P. van der Valk, A. W. J. van Pelt, H. J. Busscher, H. P. de Jong, C. R. H. Wildevuur, and J. Arends, J. Biomed. Mater. Res., 17,807 (1983) https://doi.org/10.1002/jbm.820170508
  18. F. Grinnell, Int. Rev. Cytol., 53, 65 (1978) https://doi.org/10.1016/S0074-7696(08)62241-X
  19. D. R. Absolom, L. A. Hawthorn, and G. Chang, J. Biomed. Mater. Res., 22, 271 (1988) https://doi.org/10.1002/jbm.820220403
  20. Y. Tamada and Y. lkada, 'Cell attachment to various polymer surface', in Polymer in Medicine II, E. Chellini, P. Giusti, C. Migliaresl, and L. Nicolais, Editors, Plenum Press, New York, pp.101 (1986)
  21. J. A. Jansen, J. P. C. M. van der Waerden, and K. de Groot, Biomaterials, 12, 25 (1991) https://doi.org/10.1016/0142-9612(91)90127-V
  22. T. G. van Kooten, J. M. Schakenraad, H. C. van der Mei, and J. H. Busscher, Biomaterials, 13, 897 (1992) https://doi.org/10.1016/0142-9612(92)90112-2
  23. H. M. W. Uyen, J. M. Schakenraad, J. Sjollema, J. Noordmans, W. L. Jongebloed, I. Stokroos, and H. J. Busscher, J. Biomed. Mater. Res., 24, 1599 (1990) https://doi.org/10.1002/jbm.820241205
  24. T. G. Ruardy, J. M. Schakenraad, H. C. van der Mei, and H. J. Busscher, Surf. Sci Rep., 29, 1 (1997)
  25. S. F. D'Souza, Appl. Biochem.Biotechnol., 96, 225 (2001) https://doi.org/10.1385/ABAB:96:1-3:001
  26. A. Upadhyaya, and A. van Oudenaarden, Curr. Biol., 13, R734 (2003) https://doi.org/10.1016/S0960-9822(02)01375-1
  27. G. B. Fields, J. L. Lauer, Y Dori, P. Forns, Y C. Yu, and M. Tirrell, Biopolymers,47, 143 (1998) https://doi.org/10.1002/(SICI)1097-0282(1998)47:2<143::AID-BIP3>3.0.CO;2-U
  28. D. S. Walker, M. D. Garrison, and W. M. Richert, J. Colloid Interf. Sci., 157, 41 (1993) https://doi.org/10.1006/jcis.1993.1155
  29. M. J. Lydon, T. W. Minett, and B. J. Tighe, Biomaterials, 6, 396 (1985) https://doi.org/10.1016/0142-9612(85)90100-0
  30. J. Elwing, S. Welin, A. Askendahl, U. Nilsson, and I. Lundstrom, J. Colloid Interf. Sci., 119, 203 (1987) https://doi.org/10.1016/0021-9797(87)90260-8
  31. J. Elwing, A. Askendal, and I. Lundstrom, Prog. Colloid Polym. Sci., 74, 103 (1987) https://doi.org/10.1007/BF01191019
  32. H. Elwing, A. Askendal, and I. Lundstrom, J. Biomed. Mater. Res., 21, 1023 (1987) https://doi.org/10.1002/jbm.820210808
  33. H. Elwing, B. Nilsson, K. E. Svensson, A. Askendahl, U. R. Nilsson, and I. Lundstrom, J. Colloid Interf. Sci., 125, 139 (1988) https://doi.org/10.1016/0021-9797(88)90062-8
  34. H. Eiwing, A. Askendal, and I. Lundstrom, J. Colloid Interf. Sci., 128, 296 (1989) https://doi.org/10.1016/0021-9797(89)90407-4
  35. S. Welin-Klintstrom, M. WIkstrom, A. Askendal, H. Elwing, I. Lundstrom, J. O. Karlsson, and S. Renvert, Colloids Surfaces, 44, 51 (1990) https://doi.org/10.1016/0166-6622(90)80186-8
  36. H. Elwing, and C. G. Golander, Colloid Interf. Sci., 32, 317 (1990) https://doi.org/10.1016/0001-8686(90)80022-R
  37. S. Welin-Klintstrom, A. Askendal, and H. Elwing, J. Colloid Interf. Sci., 158, 188 (1993) https://doi.org/10.1006/jcis.1993.1246
  38. V. Hlady, C. Golander, and J. D. Andrade, Colloids Surfaces, 33, 185 (1988) https://doi.org/10.1016/0166-6622(88)80060-X
  39. C. G. Golander, Y. S. Lin, V. Hlady, and J. D. Andrade, Colloids Surfaces, 49, 289 (1990) https://doi.org/10.1016/0166-6622(90)80111-G
  40. V. Hlady, J. N. Lin, and J. D. Andrade, Biosensors Bioelect., 5, 291 (1990) https://doi.org/10.1016/0956-5663(90)85002-T
  41. V. Hlady, Appl. Spectrosc., 45, 246 (1991) https://doi.org/10.1366/0003702914337533
  42. J. F. Carley and P. T. Kitze, Polym. Eng. Sci., 20, 330 (1980) https://doi.org/10.1002/pen.760200504
  43. G. P. Lopez H. A. Biebuyck, C. D. Frisbie, and G. M. Whitesides, Science, 260, 647 (1993) https://doi.org/10.1126/science.8480175
  44. H. Zhao and D. Beysens, Langmuir, 11, 627 (1995) https://doi.org/10.1021/la00002a045
  45. Y. S. Lin, V. Hlady, and C. G. Golander, Coll. Surf. B: Biointerfaces, 3, 49 (1994) https://doi.org/10.1016/0927-7765(93)01114-7
  46. B. Liedberg and P. Tengvall, Langmuir, 11, 3821 (1995) https://doi.org/10.1021/la00010a037
  47. M. Riepl, M. Ostblom, I. S. Lundstrom, C. T. Svensson, A. W. Denier van der Gon, M. Schaferling, and B. Liedberg, Langmuir, 21, 1042 (2005) https://doi.org/10.1021/la047584t
  48. W. G. Pitt, J. Colloid Interf. Sci., 133, 223 (1989) https://doi.org/10.1016/0021-9797(89)90295-6
  49. C. G. Golander and W. G. Pitt, Biomaterials, 11, 32 (1990) https://doi.org/10.1016/0142-9612(90)90048-U
  50. J. H. Lee, J. W. Park, and H. B. Lee, Polymer(Korea), 14, 646 (1990)
  51. H. B. Lee and J. D. Andrade, Cell adhesion on gradient surfaces, Trans. 3rd World Biomaterials Congr., 43 (1988)
  52. H. B. Lee, 'Application of synthetic polymers in implants', in Frontiers of Macromolecular Science, T. Saegusa, T. Higashimura, and A. Abe, Editors, Blackwell Scientific Publications, Oxford, pp. 579 (1989)
  53. C. H. Bamford and J. C. Ward, Polymer, 2, 277 (1961) https://doi.org/10.1016/0032-3861(61)90031-3
  54. N. Morosoff, B. Crist, M. Bumgarner, T. Hsu, and H. Yasuda, J. Macromol. Sci., Chem., A10, 451 (1976)
  55. Jr. J. Mitchell and L. R. Perkins, Appl. Polym. Symp., 4, 167 (1967)
  56. D. T. Clark and A. Dilks, J. Polym. Sci. Polym. Chem. Ed., 17, 957 (1979) https://doi.org/10.1002/pol.1979.170170404
  57. H. Steinhauser and G. Ellinghorst, Angew. Makromol. Chem., 120, 177 (1984) https://doi.org/10.1002/apmc.1984.051200111
  58. H. Iwata, A. Kishida, M. Suzuki, Y. Ham, and Y. Ikada, J. Polym. Sci., Polym. Chem. Ed., 26, 3309 (1988) https://doi.org/10.1002/pola.1988.080261216
  59. C. M. Chan, T. M. Ki, and H. Hiraoka, Surf. Sci. Rep., 24, 1 (1996) https://doi.org/10.1016/0167-5729(96)80003-3
  60. C. G. Golander and W. G. Pitt, Biomaterials, 11, 32 (1990) https://doi.org/10.1016/0142-9612(90)90048-U
  61. J. H. Lee, H. G. Kim, G. Khang, H. B. Lee, and M. S. Jhon, J. Collid Interf. Sci., 151, 563 (1992) https://doi.org/10.1016/0021-9797(92)90504-F
  62. J. H. Lee and H. B. Lee, J. Biomater. Sci., Polym. Ed., 4, 467 (1993)
  63. H. G. Kim, J. H. Lee, H. B. Lee, and M. S. Jhon, J. Collid Interf. Sci., 157, 82 (1993) https://doi.org/10.1006/jcis.1993.1161
  64. J. H. Lee, H. W. Kim, P. K. Pak, and H. B. Lee, J. Polym. Sci.; A: Polym. Chem., 32, 1569 (1994) https://doi.org/10.1002/pola.1994.080320818
  65. B. J. Jeong, J. H. Lee, and H. B. Lee, J. Colloid Interf. Sci., 178, 757 (1996) https://doi.org/10.1006/jcis.1996.0174
  66. J. H. Lee, J. W. Park, and H. B. Lee, Polymer(Korea), 14, 646 (1990)
  67. J. H. Lee, H. W. Jung, I. J. Kang, and H. B. Lee, Biomaterials, 15, 705 (1994) https://doi.org/10.1016/0142-9612(94)90169-4
  68. J. H. Lee, J. W. Lee, G. Khang, and H. B. Lee, Biomaterials, 18, 351 (1997) https://doi.org/10.1016/S0142-9612(96)00128-7
  69. J. H. Lee, G. Khang, J. W. Lee, and H. B. Lee, J. Biomed. Mater. Res., 40, 180 (1998) https://doi.org/10.1002/(SICI)1097-4636(199805)40:2<180::AID-JBM2>3.0.CO;2-H
  70. Y. Iwasaki, K. Ishihara, N. Nakabayashi, G. Khang, J. H. Jean, J. W. Lee, and H. B. Lee, J. Biomater. Sci. Polym. Ed., 9, 801 (1998) https://doi.org/10.1163/156856298X00163
  71. Y. Iwasaki, S. Sawada, N. Nakabayashi, G. Khang, H. B. Lee, and K. Ishihara, Biomaterials, 20, 2185 (1999) https://doi.org/10.1016/S0142-9612(99)00123-4
  72. M. S. Kim, K. S. Seo, G. Khang, and H. B. Lee, Langmuir, 21, 4066 (2005) https://doi.org/10.1021/la047584t
  73. M. S. Kim, K. S. Seo, G. Khang, and H. B. Lee, Bioconjug. Chem., 16, 245 (2005) https://doi.org/10.1021/bc049860l
  74. N. L. Burnham, Am. J. Hosp. Pharm., 51, 210 (1994)
  75. R. B. Greenwald, Y. H. Choe, J. McGuire, and C. D. Conover, Adv. Drug Deliv. Rev., 55, 217 (2003) https://doi.org/10.1016/S0169-409X(02)00169-2
  76. J. H. Lee, B. J. Jeong, and H. B. Lee, J. Biomed. Mater. Res., 34, 105 (1997) https://doi.org/10.1002/(SICI)1097-4636(199701)34:1<105::AID-JBM14>3.0.CO;2-J
  77. C. D. Bain and G. M. Whitesides, J. Am. Chem Soc. 110, 5897 (1988) https://doi.org/10.1021/ja00225a050
  78. E. B. Troughton, C. D. Bain, G. M. Whitesides, R. G. Nuzzo, D. L. Allara, and M. D. Porter, Langmuir, 4, 365 (1988) https://doi.org/10.1021/la00080a021
  79. R. E. Johnson and R. H. Dettre, in Surface and Colloid Science, E. Matijevic, Editors, Wiley Interscience, New York, Vol. 2, pp.85 (1969)
  80. A. W. Adamson, Physical Chemistry of Surfaces, 3rd ed., Wiley, New York, 1976
  81. T. G. Ruardy, H. E. Moorlag, J. M. Schakenraad, H. C. van der Mei, and H. H. Busscher, J. Colloid Interf. Sci., 188, 209 (1997) https://doi.org/10.1006/jcis.1997.4769
  82. T. Ueda-Yukoshi and T. Matsuda, Langmuir, 11, 4135 (1995) https://doi.org/10.1021/la00010a080
  83. R. M. A. Azzam and N. M. Bashara, Elipsometry and Polarized Light, Elsevier, Amsterdam, pp. 269 (1987)
  84. J. D. Andrade, 'X-ray photoelectron spectroscopy(XPS)', in Surface and Interfacial Aspects of Biomedical Polymers, J. D. Andrade, Editor, Plenum Press, New York, Vol. 1, pp. 105 (1985)
  85. J. H. Lee, G. Khang, J. W. Lee, and H. B. Lee, J. Colloid Interf. Sci., 205, 323 (1998) https://doi.org/10.1006/jcis.1998.5688
  86. J. N. Lin, B. Drake, A. S. Lea, P. K. Hansma, and J. D. Andrade, Langmuir, 6, 509 (1990) https://doi.org/10.1021/la00092a036
  87. V. Hlady, R. A. van Waggenen, and J. D. Andrade, 'Total internal reflection intrinsic fluorescence(TIRF) spectroscopy applied to protein adsorption', in Surface and Interfacial Aspects of Biomedical Polymers, J. D. Andrade, Editor, Plenum Press, New York, Vol. 2, pp. 81 (1985)
  88. S. V. Roberson, A. J. Fahey, A. Sehgal, and A. Karim, Appl. Surf. Sci., 200, 150 (2002) https://doi.org/10.1016/S0169-4332(02)00887-5
  89. J. H. Lee, Ph. D. thesis, University of Utah, Salt Lake City (1988)
  90. N. Green, Biochem. J., 89, 585 (1963) https://doi.org/10.1042/bj0890585
  91. S. B. Carter, Nature, 208, 1183 (1965) https://doi.org/10.1038/2081183a0
  92. J. H. Lee, S. J. Lee, G. Khang, and H. B. Lee, J. Colloid Interf. Sci. 230, 84 (2000) https://doi.org/10.1006/jcis.2000.7080