Chitosan Oligosaccharide Inhibits $^{203}HgCl_2-Induced$ Genotoxicity in Mice: Micronuclei Occurrence and Chromosomal Aberration

  • Yoon Hyun Joong (College of Pharmacy, and Research Institute of Drug Development, Chonnam National University) ;
  • Park Haeng Soon (College of Pharmacy, and Research Institute of Drug Development, Chonnam National University) ;
  • Bom Hee-Seung (Department of Nuclear Medicine, Chonnam University Hospital) ;
  • Roh Young Bok (Department of Biology, College of Natural Science, Chosun University) ;
  • Kim Jong Se (Department of Biology, College of Natural Science, Chosun University) ;
  • Kim Young Ho (College of Pharmacy, and Research Institute of Drug Development, Chonnam National University)
  • Published : 2005.09.01

Abstract

The purpose of this study was to investigate the safety of chitosan oligosaccharide and the effects of chitosan oligosaccharide on mercury induced genotoxicity in mice using the micronuclei and chromosome aberration. The micronuclei test was performed by microscopic examination $(\times1,000,\;stained\;using\;a\;May-Grunwald\;solution)$ after administering 0.01, 0.1, and $1\%(10\;mg/mL)$ chitosan oligosaccharide for 7, 60, and 180 days ad libitum in mice. Total micronuclei of 1,000 polychromatic erythrocytes were recorded for each group. There was no difference between the untreated and experimental groups. The intake periods and concentrations of chitosan oligosaccharide did not affect the occurrence of micronuclei in bone marrow cells (P>0.05). The chromosomal aberration test was performed by microscopic examination $({\times}1,000,\;stained\;using\;a\;4\%\;Giemsa\;solution)$ after administering the same concentration of chitosan oligosaccharide to mice, in $F_1,\;F_2,\;F_3$ generations and parents. The frequency of chromosomal aberrations was defined as [Ydr=(D+R)/total number of counted lymphocytes]. Similar to the micronuclei test, there was no difference between the untreated and treated groups. These results showed that the intake periods and concentrations of chitosan oligosaccharide did not affect chromosomal aberrations in bone marrow cells (P>0.05). To investigate the effect of chitosan oligosaccharide on mercury-induced chromosome aberration, mice in each condition were supplied with $^{203}HgCl_2$ and chitosan oligosaccharide ad libitum. Chitosan oligosaccharide significantly inhibited $^{203}HgCl_2-induced$ chromosome aberration in mice. Based on the results of this study, it may be concluded that the chitosan oligosaccharide is a nontoxic material that could be used as a suppressor of heavy metal-induced genotoxicity.

Keywords

References

  1. Bala, K. V. C. and Rao, K. P, Inhibition of methyl mercury chloride-induced chromosomal damage by gamma-linonelic acid. Fd. Chem. Toxic, 31, 431-434 (1993) https://doi.org/10.1016/0278-6915(93)90158-U
  2. Darina, C. and Jozef, S., Effect of carboxymethyl-chitin-glucan on cyclophosphamide induced mutagenicity. Mutation Research, 346, 43-48(1995) https://doi.org/10.1016/0165-7992(95)90067-5
  3. Fenench, M. and Morley, A. A., Measurement of micronuclei in lymphocyte. Mutation Research, 147, 29-36 (1985) https://doi.org/10.1016/0165-1161(85)90015-9
  4. Garcia, C. L., Darroudi, F., Tates, A. D., and Natarajan, A. T., Induction and presistence of micronuclei, sister-chromatid exchanges andchromosomal aberrations in splenocytes and bone-marrow cells of rats exposed to ethylene oxide. Mutation Research, 492, 59-67 (2001) https://doi.org/10.1016/S1383-5718(01)00149-8
  5. Goncharova, R., Zabrejko, S., Dalivelya, O., and Kuzhir, T., Anticlastogenecity of two derivatives of 1, 4-dihydroisonicotinic acid in mouse micronucleus test. Mutation Research, 496, 129-135 (2001) https://doi.org/10.1016/S1383-5718(01)00223-6
  6. Guadano, A., Coloma, A. G., and Pena, E., Genotoxicity of the insecticide rotenone in cultured human Iympocytes. Mutation Research, 414, 1-7 (1998) https://doi.org/10.1016/S1383-5718(98)00032-1
  7. Heddle, J. A., A rapid in vivo test for chromosome damage. Mutation Research, 18, 187-190 (1973) https://doi.org/10.1016/0027-5107(73)90035-3
  8. Hirano, S. M., Iwata, K., Nakayama, H., andToda, H., Enhancement of serum lysozyme activity by injecting a mixture of chitosan oligosaccharides intravenously in rabbit. Agric. Biol. Chem., 55, 2623-2625 (1991) https://doi.org/10.1271/bbb1961.55.2623
  9. Jagetia, G. C. and Aruna, R., Effects of various concentration of acyclovir on cell survival and micronuclei induction on cultured HeLa cells. Mutation Res., 446, 155-165 (1999) https://doi.org/10.1016/S1383-5718(99)00159-X
  10. Kim, J. H., Yoo, K. J., Song, H. C., and Kim, H. K., Antiparasitic effects of chitosan oligosaccharide against scuticociliatids collected from japanese flounder, Paralichtys olivaceus. Kor. J. Chitin Chitosan, 6, 47-52 (2001)
  11. Kim, Y. H., Bom, H. S., Kim, K. Y., Kim, H. K., and Kim, J. Y., Inhibitory effect of chitosan on the milk transfer of radiostrontium from contaminated mice to their sucklers. Kor. J. Chitin Chitosan, 4, 15-18 (1999)
  12. Kim, Y. H., Bom, H. S., Kim, J. Y., and Roh, Y. B., The effect of calcium and chitosan metabolism to the excretion of radiostrontium in mice. J. Kor. Asso. Radiat. Prot., 22, 9-14 (1997)
  13. Koga, D., Induction of chitinase for plant self-defense. Chitin/ Chitosan symposium, in Japan Chitin/Chitosan Res., 4-26 (1993)
  14. Lawrence, J. N. and Benford, D. J., Detection of chemicalinduced unscheduled DNA synthesis in cultures of normal adult human keratinoctes. Toxic. In Vitro, 5, 377-381 (1991) https://doi.org/10.1016/0887-2333(91)90057-K
  15. Ledebur, M. V. and Schmid, W, The micronucleus test methodological aspects. Mutation Res., 19, 109-117 (1973) https://doi.org/10.1016/0027-5107(73)90118-8
  16. Lin, W., Xue, H., Liu, S., He, Y, Fu, J., and Zhou, Z., Genotoxicity of nitric oxide produced from sodium nitroprusside. Mutation Res., 413, 121-127 (1998) https://doi.org/10.1016/S1383-5718(98)00014-X
  17. Natarajan, A. T. and Obe, G., Molecular mechanisms involved in the production of chromosomal aberrations. Chromosome, 90, 120-127 (1984) https://doi.org/10.1007/BF00292448
  18. Nishimura, Y., Kim, S. H., Ikota, N., Arima, H., Bom, H. S., Kim, Y. H., Watanabe, Y., Yukawa, M., and Ozawa, T., Radioprotective effect of chitosan in sub-lethally X-ray irradiated mice. J. Radiat. Res., 44, 53-58 (2003) https://doi.org/10.1269/jrr.44.53
  19. Okamoto, Y., Ohmi, H., Minami, S., Muhashi, A., Shigemasa, Y., Okumura, M., and Fujinaga, T., Anti-tumor effect of chitin and chitosan on canine transmissible sarcoma. Chitin/ Chitosan symposium, in Japan Chitin/Chitosan Res., 1, 76-77 (1995)
  20. Padovani, L., Tronati, L., Mauro, F., Testa, A., Appolloni, M., Azzidei, P., Caporossi, D., Tedeschi, B., and Vernole, P., Cytogenetic effects in lymphocytes from children exposed to radiation fall-out after the chernobyl accident. Mutation Res., 395, 249-254 (1997) https://doi.org/10.1016/S1383-5718(97)00137-X
  21. Ramalho, A., Sunjevaric, I., and Natarajan, A. T., Use of the frequencies of micronuclei as quantitative indicators of X-ray-induced chromosomal aberration in human peripheral blood lymphocytes: Comparison of the method. Mutation Res., 207, 141-146 (1988) https://doi.org/10.1016/0165-7992(88)90078-4
  22. Rauscher, R., Edenharber, R., and Platt, K. L., In vitro antimutagenic and in vivo anticlastogenic effects of carotenoids and solvent extracts from fruits and vegetables rich in carotenoids. Mutation Res., 41, 129-142 (1998)
  23. Robbiano, R., Mereto, E., Morando, A M., and Brambilla, G., Increased frequency of micronucleated kidney cells in rats exposed to halogenated anaesthetic. Mutation Res., 413, 1-6 (1998) https://doi.org/10.1016/S1383-5718(97)00187-3
  24. Romm, H. and Stwphan, G, Chromosome analysis-a routine method for quantitative radiation dose assessment. Kerntechnik, 55(4), 219-225 (1990)
  25. Schmid, M., The micronucleus test. Mutation Res., 31, 9-15 (1975) https://doi.org/10.1016/0165-1161(75)90058-8
  26. Skjak, G., Anthonsen, T., and Sandford, P., The use of chitosan in cosmetics. In Chitin and chitosan: Sources, chemistry, biochemistry, physical properties and application. Elsevier, Applied science, pp. 139-147, (1998)
  27. Stacher, A, Ruzicka, H., and Schuhfried, G, Chromosomal aberration due to cytostatic agents. Int. J. Clin. Pharmacol., 9, 250-257 (1974)
  28. Stoiber, T., Bonacker, D., Boehm, K. J., Bolt, H. M., Their, R., Degen, G. H., and Unger, E., Disturbed microtubule function and induction of micronuclei by chelate complexes of mercury(II). Mutation Res., 563, 97-106 (2004) https://doi.org/10.1016/j.mrgentox.2004.06.009
  29. Sudharsan, A. and Heddle, J. A., Simultaneous detection of chromosomal aberration and sister-chromatid exchanges: Experience with DNA intercalating agents. Mutation Res., 78, 253-260 (1980) https://doi.org/10.1016/0165-1218(80)90106-8
  30. Thier, R., Bonacker, D., Stoiber, T., Bohrn, K. J., Wang, M., Unger, E., Bolt, H. M., and Degen, G., Interaction of metal salts with cytoskeletal motor protein systems. Toxicol. Lett., 140-141, 75-81 (2003) https://doi.org/10.1016/S0378-4274(02)00502-7
  31. Tokura, S., Miura, Y., Kaneda, Y., and Uraki, Y., Drug delivery system using biodegradable carrier. Annual Report, Chitin/ Chitosan Res., pp. 314-324, (1992)
  32. Tsurutani, R., Yoshimura, M., Tanimoto, N., Hasegawa, A., and Kifune, K., Clinical application of chitin materials to ulcers. Chitin/Chitosan symposium, in Japan Chitin/Chitosan Res., 1, 78-79 (1995)
  33. Wakata, A. and Sasaki, M. S., Measurement of micronuclei by cytochalasin-block method in cultured chinese hamster cells: Comparison with types and rates of chromosome aberration. Mutation Res., 190, 51-57 (1987) https://doi.org/10.1016/0165-7992(87)90082-0
  34. Wolff, S., Biological dosimetry with cytogenetic endpoints. New Horizons in Biological Dosimetry, 351-362 (1991)
  35. Yoon, H. J., Kim, Y. H., Park, S. W., Lee, H. B., and Park, H. S., Chitosan increases the release of renal dipeptidase from porcine renal proximal tubule cells. Korean J. Biol. Sci., 7, 309-315 (2003)
  36. Yoon, H. J., Kim, Y. H., Lee, H. B., Lee, J. H., and Park, H. S., Study of chitosan on fibroblast growth factor 2 (bFGF) from the renal proximal tubular cells. J. Chitin Chitosan, 9(3), 114-118 (2004)
  37. Yoon, H. J., Park, H. S., Kim, J. S., Choi, Y. B., Roh, Y. B., Lee, J. H., Bom, H. S., and Kim, Y. H., Chelation effects of chitosan on radiomercury $^{203}HgCl_2$) in mice. J. Chitin Chitosan, 10(2), 61-66 (2005)