Turbulent Flow over Thin Rectangular Riblets

  • El-Samni O. A. (Mechanical power Engineering Department, The University of Alexandria) ;
  • Yoon Hyun Sik (Advanced Ship Engineering Research Center(ASERC), Pusan National University) ;
  • Chun Ho Hwan (Advanced Ship Engineering Research Center(ASERC), Pusan National University)
  • 발행 : 2005.09.01

초록

The effect of longitudinal thin rectangular riblets aligned with the flow direction on turbulent channel flow has been investigated using direct numerical simulation. The thin riblets have been modeled using the immersed boundary method (IBM) where the velocities at only one set of vertical nodes at the riblets positions are enforced to be zeros. Different spacings, ranging between 11 and 43 wall units, have been simulated aiming at getting the optimum spacing corresponding to the maximum drag reduction while keeping the height/spacing ratio at 0.5. Reynolds number based on the friction velocity ${\mu}_\tau$ and the channel half depth $\delta$ is set to 150. The flow is driven by adjusted pressure gradient so that the mass flow rate is kept constant in all the simulations. This study shows similar trend of the drag ratio to that of the experiments at the different spacings. Also, this research provides an optimum spacing of around 17 wall units leading to maximum drag reduction as experimental data. Explanation of drag increasing/decreasing mechanism is highlighted.

키워드

참고문헌

  1. Bechert, D. W. and Bartenwerfer, M., 1989, 'The Viscous Flow on Surfaces with Longitudinal Ribs,' J. Fluid Mech., Vol. 206, pp. 105-129 https://doi.org/10.1017/S0022112089002247
  2. Bechert, D. W., Bruce, M., Hage, W., Van Der Hoeven, J. G. T. and Hoppe, G., 1997, 'Experiments on Drag Reducing Surfaces and Their Optimization with an Adjustable Geometry,' J. Fluid Mech., Vol. 338, pp. 59-87 https://doi.org/10.1017/S0022112096004673
  3. Bechert, D. W., Bruce, M. and Hage, W., 2000, 'Experiments with Three-Dimensional Riblets as an Idealized Model of Shark Skin,' Experiments in Fluids, Vol. 28, pp.403-412 https://doi.org/10.1007/s003480050400
  4. Bruce, M., Bechert, D. W., Van Der Hoeven, J. G. T., Hage, W. and Hoppe, G., 1993, 'Experiments with Conventional and with Novel Adjustable Erag-Reducing Surfaces,' In So, R. M. C. ; Speziale, C. G. ; Launder, B. E. Eds., Near-Wall Turbulent Flows, Elsevier, Amsterdam, pp. 719-738
  5. Choi, H., Moin, P. and Kim, J., 1993, 'Direct Numerical Simulation of Turbulent Flow over Riblets,' J. Fluid Mech., Vol. 255, pp. 503-539 https://doi.org/10.1017/S0022112093002575
  6. Choi, K. S., 1989, 'Near-Wall Structure of Turbulent Boundary Layer with Riblets,' J. Fluid Mech., Vol. 208, pp.417-458 https://doi.org/10.1017/S0022112089002892
  7. Chu, D. C. and Karniadakis, G. E., 1993, 'A Direct numerical Simulation of Larminar and Turbulent Flow over Riblet-Mounted Surfaces,' J. Fluid. Mech., Vol. 250, pp. 1-42 https://doi.org/10.1017/S0022112093001363
  8. El-samni, O. A., Yoon, H. S. and Chun, H. H., 2005, 'DNS of Turbulent Flow over thin Rectangular Riblets,' $2^{nd}$ International Symposium on Seawater Drag Reduction, Busan, Korea, 23-26 May 2005, pp. 517-527
  9. Goldstein, D., Handler, R. and Sirovich, L., 1995, 'Direct Numerical Simulation of Turbulent Flow over a Modeled Riblet-Covered Surface,' J. Fluid. Mech., Vol. 302, pp. 333-376 https://doi.org/10.1017/S0022112095004125
  10. Goldstein, D., Handler, R. and Sirovich, L., 1995, 'Modeling a No-Slip Flow Boundary with an External Force Field,' J. Comput. Phys., Vol. 105, pp. 354-366 https://doi.org/10.1006/jcph.1993.1081
  11. Kim, J., Kim, D. and Choi, H., 2001, 'An Immersed-Boundary Finite-Volume Method for Simulations of Flow in Complex Geometries,' Journal of Computational Physics, Vol. 171, pp. 132-150 https://doi.org/10.1006/jcph.2001.6778
  12. Kim, J. and Moin, P., 1985, 'Application of a Fractional Step Method to Incompressible Navier-Stokes Equations,' Journal of Computational Physics, Vol. 59, pp. 308-323 https://doi.org/10.1016/0021-9991(85)90148-2
  13. Kim, J., and Moin, P, and Moser, R., 1987, 'Turbulent Statistics in Fully Developed Channel Flow at Low Reynolds Number,' J. Fluid Mech., Vol. 177, pp. 133-166 https://doi.org/10.1017/S0022112087000892
  14. Saiki, E. M. and Biringen, S., 1996, 'Numerical Simulation of a Cylinder in Uniform Flow : Application of a Virtual Boundary Method,' J. Comput. Phys., Vol. 123, pp. 450-465 https://doi.org/10.1006/jcph.1996.0036
  15. Stalio, E. and Nobile, E., 2003, 'Direct Numerical Simulation of Heat Transfer over Riblets,' Int. J. of Heat and Fluid, Vol. 24, pp. 356-371 https://doi.org/10.1016/S0142-727X(03)00004-3
  16. Suzuki, Y. and Kasagi, N., 1994, 'Turbulent Drag Reduction Mechanism Above a Riblet Surface,' AIAA Journal, Vol. 32, No.9, pp. 1781-1790 https://doi.org/10.2514/3.12174
  17. Vukoslavcevic, P., Wallace, J. M. and Balint, J. L., 1992, 'Viscous Drag Reduction Using Streamwise-Aligned Riblets,' AIAA Journal, Vol. 30, No.4, 1119-1122 https://doi.org/10.2514/3.11035
  18. Walsh, M. J., 1982, 'Turbulent Boundary Layer Drag Reduction Using Riblets,' AIAA paper, pp. 82-169
  19. Walsh, M. J., 1983, 'Riblets as a Viscous Drag Reduction Technique,' AIAA Journal, Vol. 21, No.4, pp.485-486 https://doi.org/10.2514/3.60126
  20. Ye, T., Mittal, R., Udaykumar, H. S. and Shyy, W., 1999, 'An Accurate Cartesian Grid Method for Viscous Incompressible Flows with Complex Immersed Boundaries,' J. Comput. Phys., Vol. 156, pp. 209-240 https://doi.org/10.1006/jcph.1999.6356
  21. Zang, Y., Street, R. L. and Koseff, J. R., 1994, 'A Non-staggered Grid, Fractional Step Method for Time-Dependent Incompressible Navier-Stokes Equations in Curvilinear Coordinates,' J. Comput. Phys., Vol. 114, pp. 18-33 https://doi.org/10.1006/jcph.1994.1146