Utilization of Ferroproteins by Candida albicans during Candidastasis by Apotransferrin

  • Published : 2005.08.01

Abstract

Many reports have stated that some of the pathogenic bacteria can obtain iron from ferroproteins, such as cytochrome C, ferritin, hemin, hemoglobin, and myoglobin. These reports prompted us to determine if an opportunistic pathogenic fungus, Candida albicans, can utilize ferroproteins to circumvent the iron-regulatory effect of transferrin. The following assays were carried out to measure in vitro growth stimulation by the ferroproteins: as an initial step, C. albicans was cultured in iron-free (pretreated with apotransferrin for 24h) culture medium. Once Candida albicans yeast cell growth reached stasis from iron starvation, individual ferroproteins were added to the culture media. Results showed that hemin, hemoglobin, and myoglobin supported a partial growth recovery. Additional studies with haptoglobin, a serum protein that interacts with the globin moiety of certain ferroproteins, established that C. albicans could obtain iron from the haptoglobin-ferroprotein complexes. These data indicate that the heme part of the ferroproteins is the source of iron. This implies that heme oxygenase, CaHMX1 might be involved in bringing about dissociation of heme-containing protein for iron-acquisition. In addition, anticandidal activity of transferrin takes place not only by the process of iron regulation, but also by direct interaction with the yeast cells.

Keywords

References

  1. Bullen, J. J. The significance of iron in infection. Rev. Infec. Dis., 3, 1127-1138 (1981) https://doi.org/10.1093/clinids/3.6.1127
  2. Bullen, J. J., Rogers, H. J., and Griffiths, E. Role of iron in bacterial infection. Curr. Top. Microbial. Imunol., 80, 1-35 (1978)
  3. Caroline, L., Taschdjian, C. L., Kozin, P. J., and Schade, A. L. Reversal of serum fungistasis by addition of iron. J. Invest. Dermatol., 43, 415-419 (1964) https://doi.org/10.1038/jid.1964.69
  4. Cowart, R. E. and Foster, B. G. Differential effects of on the growth of Listeria monocytogens: minimum requirements and mechanism if acquistion. J. Bacteriol., 142, 581-587 (1985)
  5. Cutler, J. E. and Han, Y. Fungal factors implicated in pathogenesis. In The mycota VI: human and animal relationship (Eds: Howard, D. H. and Miller, J). Springer- Verlag, Berlin. pp 1-29 (1996)
  6. Eaton, J. W., Brandt, P., and Mahoney, J. R. Haptoglobin: a natural bacteriostat. Science, 215, 691-692 (1982) https://doi.org/10.1126/science.7036344
  7. Esterly, N. B., Bramner, S. R., and Crounse, R. G. Relationship of transferrin and iron to serum inhibition of Candida albicans. J. Invest. Dermatol. 49, 437-442 (1967) https://doi.org/10.1038/jid.1967.66
  8. Fletcher, J. and Huehns, E. R. Function of transferrin. Nature, 218, 1211-1214 (1986) https://doi.org/10.1038/2181211a0
  9. Finkelstein, R. A., Sciortino, C. V., and McIntosh, M. A. Role of iron in microbe-host interactions. Rev. Infect. Dis., 5, S759- S777 (1983) https://doi.org/10.1093/clinids/5.Supplement_4.S759
  10. Garcia-Mendoza, C. and Novales-Lidieu, M. Chitin in the new wall of regenerating protoplasts of Candida utilis. Nature, 220, 1035-1036 (1968) https://doi.org/10.1038/2201035a0
  11. Gentry, M. J., Confer, A. W., Weinberg, E. D., and Homer, J. T. Cytotoxin (leukotoxin) production by Pasteurella haemolytica: requirement for as iron-containing compound. Am. J. Vet. Res., 47, 1919-1923 (1986)
  12. Graham, G. F. and Bates, G. W. Approaches to the standardization of serum unsaturated iron-binding capacity. J. Lab. Clin. Med., 88, 477-486 (1976)
  13. Green, I., Kirkpatrick, C. H., and Dale, D. C. Lactoferrin-specific localization in the nuclei of human polymorphonuclear neutrophilic leukocytes. Proc. Soc. Exp. Biol. Med., 137, 1311-1317 (1971) https://doi.org/10.3181/00379727-137-35779
  14. Griffiths, E. Availability of iron and survival of bacteria in infection. In Medical Microbiology. (Eds. Easmon, C. S. F. et al.). Vol. 3, pp 153-157. Academic press. London, (1983)
  15. Hamaguchi, H., Isomoto, A., Miyake, Y., and Nakajima, H. Some spectra properties of the human hemoglobinhaptoglobin complex. Biochemistry, 10, 1741-1745 (1971) https://doi.org/10.1021/bi00786a001
  16. Han, Y., Riesselman, M. H., and Cutler, J. E. Protection against candidiasis by an immunoglobulin G3 monoclonal antibody specific for the same mannotriose as an IgM protective antibody. Infect. Immun., 68, 1649-1654 (2000) https://doi.org/10.1128/IAI.68.3.1649-1654.2000
  17. Han, Y., Kozel, T. R., Zhang, M. X., MacGill, R. S., Caroll, M. C., and Cutler, J. E. Complement is essential for protection by an IgM and an IgG3 monoclonal antibody against experimental, hematogenously disseminated candidiasis. J. Immunol., 167, 1550-1557 (2001) https://doi.org/10.4049/jimmunol.167.3.1550
  18. Han, Y. and Lee, J. Berberine synergy with amphotericin B against disseminated candidiasis. Biol. Pharm. Bull., 28, 541- 544 (2005a) https://doi.org/10.1248/bpb.28.541
  19. Han, Y. Ginkgo terpene component has an anti-inflammatory effect on Candida albicans-caused arthritic inflammation. Int. Immunopharm., 5, 1049-1056 (2005b) https://doi.org/10.1016/j.intimp.2005.02.002
  20. Howard, D. H. Acqusition, transport, and storage of iron by pathogenic fungi. Clin. Microbiol. Rev., 12, 394-404 (1999)
  21. Masson, P. J. and Heremans, J. F. Lactoferrin in milk from different species. Comp. Biochem. Physiol., 39B, 119-129 (1971)
  22. Masson, P. J., Heremans, J. F., and Dive, C. H. An iron-binding protein common to many external secretions. Clin. Chim. Acta, 14, 729-734 (1966) https://doi.org/10.1016/0009-8981(66)90003-9
  23. Otto, B. R., Sparrius, A. M., Verweis-Van Vught, J. J., and MaClaren, D. M. Iron-regulated outer membrane protein of Bacteroides fragilis. Infect. Immun., 58, 3954-3958 (1990)
  24. Pendrak, M. L., Chao, M. P., Yan, S. S., and Roberts, D. D. Heme oxygenase in Candida albicans is regulated by hemoglobin and is necessary for metabolism of exogenous heme and hemoglobin to -biliverdin. J. Biol. Chem., 279, 3426-3433 (2004) https://doi.org/10.1074/jbc.M311550200
  25. Perry, R. D. and Brubaker, R. R. Accumulation of iron by Yersiniae. J. Bacteriol. 137, 1290-1298 (1979)
  26. Phelps, C. F. and Antonini, E. A study of the kinetics of iron and copper binding to hen ovotrasferrin. J. Biochem., 147, 385- 391 (1975) https://doi.org/10.1042/bj1470385a
  27. Pidock, K. A., Wooten, J. A., Daley, B. A., and Stull, T. L. Iron acquisition by Haemophilus influenza. Infect. Immun., 56, 721-725 (1998)
  28. Roth, F. J. Jr. and Goldstein, M. I. Inhibition of growth of pathogenic yeast by human serum. J. Invest. Dermatol., 36, 383-387 (1961) https://doi.org/10.1038/jid.1961.59
  29. Santos, R., Buisson, N., Knight, S., Dancis, A., Camadro, J. M., and Lesuisse, E. Hemin uptake and use as an iron source by Candida albicans: role of CAHMX1-encoded haem oxygenase. Microbiol., 149, 579-588 (2003) https://doi.org/10.1099/mic.0.26108-0
  30. Simonson, C., Brener, D., and Devoe, I. W. Expression of a high affinity mechanism for acquisition of transferrin iron by Neisseria meningutudis. Infect. Immun., 36, 107-113 (1982)
  31. Stull, T. Protein sources of heme for Haemophilus influenza. Infect. Immun., 55, 148-153 (1997)
  32. Valenti, P., Visca, P., Giovani, A., and Oris, N. Interaction between lactoferrin and ovotransferrin and candida cell. FEMS Microbiol. Lett., 33, 271- 275 (1986) https://doi.org/10.1111/j.1574-6968.1986.tb01285.x
  33. Weinberg, E. D. Role of iron in host-parasite interaction. J. Infect. Dis., 124, 401-410 (1971) https://doi.org/10.1093/infdis/124.4.401
  34. Weinberg, E. D. Iron and interaction. Microbiol. Rev., 42, 45-66 (1978)
  35. Young, I. G., Cox, G. B., and Gibson, F. 2,3-Dihydroxy-benzoate as bacterial growth factor and its route of biosynthesis. Biochim. Biophys. Acta, 441, 319-331 (1967)
  36. Zakaria-Meehan, Z., Massad, G., Simpson, L. M. Travis, J. C., and Oliver, J. D. Ability of Vibrio vulnificus to obtain iron from hemoglobin-haptoglobin. Infect. Immun., 56, 275-277 (1998)