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AN IDENTITY BASED AUTHENTICATED KEY
AGREEMENT PROTOCOL ON THE TATE PAIRING

Suk BonG YOON

ABSTRACT. This paper introduces an ID based authenticated two
pass key agreement protocol of Smart[4] which used the Weil pair-
ing. We propose other an ID based authenticated two pass key
agreement protocol which using the Tate Pairing. We will compare
protocol of Smart with this protocol.

1. Introduction

Modern protocol for key agreement was based on the Diffie-Hellman
protocol, however this protocol is not key authenticated, so Diffie-Hellman
protocol suffers from the man-in-the-middle attack because it does not
authenticated the communicating parties. A solution for this problem is
to combine a key agreement protocol with a digital signature scheme,
so-called an authenticated key agreement protocol{(or AK protocol) ([6,
8]). In [4], N. P. Smart proposed an AK protocol using the Weil pairing.
The Weil pairing and Tate pairing are used to attack for elliptic curve
cryptosystem. Recently the Weil and Tate pairing have been used to
construct cryptosystem such as the tripartite Diffie-Hellman protocol of
Joux([5], the identity-based encryption scheme of Boneh and Franklin[1],
the short signature scheme of Boneh, Lynn and shacham[10], and so on.

Tate pairing is more efficient than the Weil pairing for computation.
In section 7, we will show that the computation of Tate pairing is faster
than, that of Weil pairing. This paper propose an identity based au-
thenticated key agreement protocol using the Tate pairing.
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We now summarize the paper, section 2 introduces the elliptic curve,
section 3 introduce key exchange protocol of Diffie-Hellman and man-
in-the-middle attack on the Diffie-Hellman protocol, section 4 describes
the basics of the Weil pairing and Tate pairing, section 5 introduces an
AK protocol(ID based authenticated key agreement protocol based on
the Weil pairing) of Smart[4], section 6 proposes other protocol based
on the Tate pairing, section 7 shows example of pairings, section 8 show
conclusion.

2. Elliptic curve

Let E/F, be an elliptic curve given by the smooth Weierstrass equa-
tion.

E:y2+a1my+a3y:x3+a2x2 + agx + as — (*)
where a1, a2, a3, a4, a5 € Fy.

Let K(= F,) be a finite field with ¢ = p™ elements, where p is prime
and m > 1. The ECDLP in E/Fq is defined to find 0 <1 < n-—-1
such that R = [P given P € E(K) and R €< P >, where n is
the order of the finite cyclic group < P >. E(K) := {(z,y) € K x
K | (x,y) satisfies (*)} U {O} is called the set of K-rational points of
an elliptic curve E, where O is the identity element of the group. The
following quantities are related to E,

by = a12 + 4ay

by = 204 + a1a3

bg = (L32 + 4ag

bg = a12a6 + 4a9ag — 010304 + a2a32 — a4’

Cq4 = b22 - 24b4
A = —by?bg — 8b4> — 27bg? + bobybs
i(B) = e’/ A.

The quantity A is called the discriminant of the Weierstrass equation,
while j(E) is called the j-invariant of E if A # 0.

Elliptic curves can be simplified over fields of different characteristics
by means of coordinate transformation. If char(K) # 2, the first step is
completing the square on the left hand side of the Weierstrass equation.
The corresponding admissible change of variables (z,y) — (z, y—1(a1z+
a3)) transforms E to an equation

E y? =2 4 ad’2? + adz + a6
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If furthermore char(IF) # 3, a similar process can be applied to the right
hand side for eliminating the 22 term. The transformation (z,y) —
(x — %ag’,y) yields
E" iyt =23+ djx +af.
If char(K) = 3, we want to eliminate at least one of the terms in equation
E' . Ifay =0 (ie, j/ = “—Zﬁ =0for A #0), E is already the desired
normal form. Otherwise the substitution (z,y) — (x + ;‘i;—:,y) yields a
curve of the form
B - y2 — x3 + a2".772 + aﬁ”.
For char(K) = 2, a similar case distinction starting with E is necessary.
If g = 0, which means j = % = 0 for A # 0, the substitution
(z,y) — (z + ag,y) additionally eliminates the z? term. Otherwise the
admissible change of variables (z,y) — (ai%r + %},aﬁy + a—l%@ﬁ)
results in a curve of the form
E": g + 2y = 2%+ a" 2% + ag”.

It is well known that the points on an elliptic curve from an abelian
group under a certain addition. Let E be an elliptic curve given by
the Weierstrass equation (x). Let E be an elliptic curve over the real
numbers, and let P and @ be two points on F. Then the addition rules
are given. If P is the point at infinity O, then —P is also O, and P+Q =
Q + P = Q. This means that O will act as the additive identity of the
group of points. If P = (z1,y1) # O, then —P = (z3, —y1 — a121 — a3).
If P and @ have different z-coordinate, then we can see that the line
intersects the curve in exactly one more point R. Then define P+ @ to
be —R. If @ = —P then we define P+ @ = O. The last possibility is
if P = (). If this conditions is true, [ would then be the tangent line to
the curve at P. Thus “4” makes E into an abelian group with identity
element O .

3. Diffie-Hellman key exchange

In 1976, Diffie and Hellman in their seminal paper ([9]) on public key
cryptography described a protocol whereby two people, A and B, can
derive and share common piece of secret information over an insecure
communications channel. We describe this protocol, known as the Diffie-
Hellman key exchange, in terms of an arbitrary group.

<Diffie-Hellman key exchange>
Setup: A and B publicly select a finite group G and an element o € G
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A B
1. private key a €@ = be G
2. compute o’ ab
3. compute (ab)e = aob (%) = a2

A and B now share the common group element a?. This protocol
is not an authenticated key exchange since any third party C could
impersonate either A or B. However, the protocol can easily be modified
by requiring a central trusted authority to certify ahead of time the
element a® for each user A.

This protocol suffers from the man-in-the-middle attack. Suppose
an adversary C in capable of intercepting A’s communications with B,
impersonating A to the other entity and impersonating the other entity
to A. We write C'(A) to indicate that the adversary C is impersonating
A in sending or receiving messages intended for or originating from A.
Similarly, C(B) denotes an adversary impersonating B. Let z,y € Z,*
be random values of C’s choice. We assume that A initiates a run of
Diffie-Hellman protocol. The man-in-the-middle attack is then executed
as follow:

1. C(B) intercepts o® from A, and C(A) forwards o® to B.
2. C(A) intercepts o’ from B,and C(B) forwards o¥ to A.

At the end of this attack, C' impersonating A has agreed a key
Kcwp = o® with B, while C' impersonating B has agreed a second
key K c() = a® with A. If these keys are used to encrypt subsequent
communications, then C, by appropriately decrypting and re-encrypting
messages, can now continue his masquerade as A to B and B to A.

4. The Weil and Tate pairing

In this section we shall summarize the properties of the Weil and Tate
pairing.

4.1. The Weil pairing

We let E be an elliptic curve over the field F, with ¢ = p™ elements
(p is prime, and m > 1). Let [ be a positive integer coprime to p, and
let p; be the group of I** roots of unity and let E[l] define a prime order
subgroup of an elliptic curve. Let P,@ € E[l] and let A and B be divisors
of degree 0 such that A ~ (P) — (0),B ~ (Q) — (0), and A, B have
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disjoint support. Let fa, fg € K(E) such that div(fa) = A, div(fB) =
[B. We now define the Weil Pairing, e;, is a map

e: E[l] x E[l] »
and is define as e(P, Q) = fa(B)/fs(A).

This map satisfies the following properties :

1. Identity : For all P € E[l],e(P,P) = 1.

2. Alternation : For all P,Q € E[l],e(P,Q) = e(Q, P)~L.

3. Bilinearity : For all P,Q,R € E[l],e(P+Q,R) = e(P,R) -e(Q, R)

and e(P,Q + R) =¢(P,Q) - e(P, R).
4. Non-degeneracy : If P € E[l] then e(P,0) = 1.
Moreover, if e(P, @) = 1 for all Q € EJl], then P = O.

5. If E[l] C E(K), then e(P,Q) € y for all P,Q € E[i].

We can compute the Weil pairing. Let | be an integer coprime to p,
and let P,Q € EJl|. Pick points T,U € E such that P+ T # U,Q +U
andT#U,Q+U. Let A= (P+T)— (T), then
A~ (P)=(0)(+ A= (P)+(0) = (P)+(T)—(T)—(P)+(O) € Prin(E)).
Similarly, let B = (Q+U)— (U) then B ~ (Q)—(0). Let f4, f € K(E)
with div(fa) = (P +T) — I(T),div(fB) = 1(Q + U) — [(U), then

(pQy < LAB) _ fa(@T) = (U)  1a@ 1) f5(T)

f(4)  fB(P+T)—(T)) falU)-f(P+T)

We now define the modified Weil pairing[l]. Let G denoted a prime

order subgroup of an elliptic curve E over the field F,.
The modified Weil pairing is a map
é&: GxG— F*u,
defined by &(P,Q) = e(P,¢(Q)) where ¢ is an automorphism of the
group of points on the elliptic curve E.

This map satisfies the following properties:
1. Bilinearity :

2. Non-degeneracy : There exists a P € G such that é(P, P) # 1.
3. Computable : One can compute é(P, Q) in polynomial time.

The Weil pairing was introduced into cryptography by Menezes, Oka-
moto and Vanstone[2] who used it to attack the elliptic curve discrete
logarithm problem on certain elliptic curve. We note that pairings have
recently been used to create several cryptographic primitives, including
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ID-based encryption ([1]) and signature schemes, as well as an identity-
based authenticated key agreement protocol ([4]). Our focus in this
paper is to construct the ID-based authenticated two pass key agreement
protocol based on the Tate pairing.

4.2. Tate pairing

The Tate pairing was introduced into cryptography by Frey and
Riick[3] in their extension of the work of Menezes, Okamoto and Van-
stone. We use the same notation as in [11].

Let E be an elliptic curve over a finite field IF;. Let [ be a positive
integer coprime to p. In most applications [ is a prime and {|(¢g —1). Let
k be a positive integer such that the field F x contains the " roots of
unity (in other word, I|(¢* — 1)). Let G = E(F,x) and write G[{] for the
subgroup of points of order | and G/IG for the quotient group (which is
also a group of exponent !). Then the Tate pairing is a mapping

t: Gl x G/IG — F* i /(F* ).
The Tate pairing is defined as follows. Given the point P there is a
function g such that the divisor of ¢ is equal to {(P) — I(O). There is
a divisor D is disjoint from the support of g, then the value of the tate
pairing is
t(P,Q) = g(D),

where g(D) = [Lg(P)™ if D =5, n:(F).
The Tate pairing satisfies the following properties :
1. Well-defined : ¢(0,Q) =1 for all Q € G/IG and

t(P,Q)=1forall P € G[l],Q € G/IG.
2. Bilinearity : For any P,R € G,t(P + R,Q) = t(P,Q) - t(R, Q).
3. Non-degeneracy : If t(P,Q) =1 for all Q € G/IG then P = O.
We define the modified Tate pairing :

6 Glll x G/IG — Fi /(Fr)!

defined by t(P,Q) = t(P,#(Q)) where ¢ is an automorphism of the
group of points on the elliptic curve F.

5. ID based authenticated two pass key agreement protocol
based on the Weil pairing

In [4], N. P. Smart proposed an AK protocol using the Weil pairing.
We now describe this protocol.
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Suppose that a subgroup of an elliptic curve for which the modified
Weil pairing & maps into the finite field F x. We assume that the ellip-
tic curve contains a large prime subgroup of order [, such that solving
discrete logarithms in the subgroup of order [ is also infeasible.

Suppose two users A and B wish to agree a key. The key generation
center choose secret key s € {1,...,1 — 1}. The key generation center
produces a random P € G and computes Pxgs = [s|P. Then key
generation center publishes P and Pxgs. When users A and B with
identity(ID) wishes to obtain a public/private key pair, the public key
is given by

Qrpay = H(ID(A)),Qipsy = H(ID(B)),

where H is a cryptographic hash function(H : {0,1}* — G). The key
generation center computes the associated private key via

Srp(a) = [8]Qrp(a): Sip() = [s|QIp(B)-
A and B choose a ephemeral privative key a and b respectively.

<Authenticated Key Exchange>

User A User B
a b
Ty = [a)P — Ty
Ty — Tg = [b]P

User A compute : k4 = é([a]Qrp(p), Pras) - €(Stpay, Tn)
User B compute : kg = é([b|Q1p(a); Pras) - €(Sip(s), Ta)
Therefore, the agreement secrete key is k = V(k4) = V(kp), where
V is a key derivation function (V : F* « — {0,1}").
We show that the secrete shared keys agree,

ka = é([a]Qrp(B)> Pxcs) - €(Sip(a), TB)
(Q1p(s), P)** - &(Qip(ay P)**
(S1p(B), Ta) - €([V1Q1p(A)s PrGS)
(

(b]Qrp(ays Prcs) - €(Stp()ysTa)
= kpg.

>

é
é
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6. ID based authenticated two pass key agreement protocol
based on the Tate pairing

We now construct AK protocol using the Tate pairing. We protocol
have two message flows. In the first setup step, the key generation center
choose two random points P,Q € G.

Suppose two users A and B wish to agree a key. We assume that
the elliptic curve contains a large prime subgroup of order [, such that
solving discrete logarithms in the subgroup of order { is also infeasible.

Step 1. Key generation center choose a secret key :

sef{l,..,1—-1}
and compute Pxgs, = [s]P, Pkas, = [9]Q,
Step 2. Key generation center publishes :
(P; Q> PKGSU PKGSQ)
Step 3. Public key of users :
Qipa),= H(ID(A)), Qrp) = H(ID(B)),
where H is cryptographic hash function(H : {0,1}* — G).
Step 4. Key generation center generate private key of users,
S1pa) = [8]Qrp(ay, Sip) = [81Q1p(B)
A and B choose a ephemeral privative key a and b respectively.

<Authenticated Key Exchange>

User A User B
a b
TA1 = [G]P’ Ta, = [a]Q I (TAlaTAg)
(TBlaTBz) — Tp = [b]P, Tp, = [b]Q

User A compute : k4 = f([a]Q]D(B), Pras) - f(SID(A),TB)

User B compute : kg = t([b|Qrp(a), Prcs) - t(Sipsy, Ta),
where Pxgs = (Pkas,) = (Pras,); Ta = (Ta,) = (Tay), Ts = (T,) -
(TB,). Therefore the agreement secrete key is k& = V(ka) = V(kp),
where V is a key derivation function(V : F* » — {0,1}*).

THEOREM. The secrete shared keys agree with users A and B.
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PROOF.
ka = t([a)Q1p(s): Pxcs) - {(Sip(ay, T)

= t(Qrp(B); (H ) = ([s1@))® - {([s1Qrp(ay, ([b1P) — ((0]Q))
(Qrp(s), (P) — (@)™ - H(Q1p(ay, (P) — (@))"
([S]QID 8), 1a](P) — [a](Q)) - {([b]Q1p(a), [s](P) — [s)(@))
(
(

Il
Shy TRy Ok

Sip(s), Ta) - (([b]Q1p(a), Prcs)
[b]Q1p(a), Pres) - t(Sio): Ta)
B

1|
™ o

7. Example of pairings

In this section, we compare Weil pairing with Tate pairing for com-
putation speed. This example describes in [12].

EXAMPLE 1. We consider the elliptic curve E/F, : y? = a3 4 1.
where p = 5fffff ffacO4fdddcfeaTceaTe fae05bf8cchaaal(~ 2160} and
|E(Fp)| = p+1 = 5fffffffac04fd444cfeaTceaTe fae0dbf8ccbaaal.
Then the pair of points in E(F,) is mapping to F,2 by Weil pairing.
Choose random two points P, R € E([F}).

P= (51011Cb2f006040d130661a46f35b9b0550826b0b,

4b189455128463a7c89¢3953ded75cc822db4a23c),

R = (5b7f372122¢17796 f4025e31a f03cldef5147a23,

29 f5eac67 feb67f939da0 fba97d8b99 f8ba2cech9),
then e(P, Q) = a1a + ag € Fj2 with a1, a0 € Fp where
a1 = 47902 f1efaa f3¢3770e750388320048¢9aaal86073
ag = 19198d92d4 f0elc6babd8d8d62e403047de0b3d8d

and e(R,Q) = bia + by € Fj2 with b, by € F, where

by = 5el £60 f1d79d2e f2d723a9b0d6b70272a90bad92¢
by = 522798105 f fcbba f315af0c21a35901 f07da3dd9.

Then the time of computing e(P, @), e(R, Q) : 47.828 sec(CPU : Pentium
650 MHz).

EXAMPLE 2. We consider the elliptic curve E/F, : y? = 3+ 1.
where p = 5f ffff f facO4f4ddcfeaTceaTe fae05bf8cchaaal (~ 2160) and
|E(Fp)] = p+1 = S5FFfffffac0dfdddcfeaTceaTe fae0bdfBccdaaal.
Then the pair of points in E(F,) is mapping to F,. by Tate pairing.
Choose random two points P, R € E(Fp).

P = (163882¢78e8378ded60e7c23116a6bad7b4b69036,
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3618be44e80 f49aca3482c00645697e518ab1a66b),
R = (5797abdf 028¢47eb97949 f f abab8223b486409¢ f f,
1e70e3a03be3be fb5004022 f370850ca0a13d10b3),
then (P, Q) = a1a + ag € Fj2 with ay,ap € F, where

a1 = la43abae8b2cea2d654e2 f10a f270164 f397c99€7,
ag = 37390e1e03 f49121dd4bb72a024cd1111 f4e8ceT.

and t(R, Q) = bia + by € Fj2 with bo, by € F, where

by = 38 fcbf9e98bdb58526b3d4355d256542¢19358033,
bp = 5885462a0490494a237 f d4b01496bc9d27 f637c76.

Then the time of computing ¢(P, @), (R, Q) : 15.242 sec(CPU : Pentium
650 MHz).

In example 1 and example 2, we can find that computation of Tate
pairing is faster than that of Weil pairing.

8. Conclusion

We proposed an ID based authenticated key agreement protocol using
the Tate pairing. The protocol have two message flows but Tate pairing
is more efficient than the Weil pairing in the computation. In the future,
we shall work that with efficiency and security.
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