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NON-COMPACT DOUGLAS-PLATEAU PROBLEM
BOUNDED BY A LINE AND A JORDAN CURVE

SuN Sook JIN

ABSTRACT. In this article, we prove the existence of a minimal
annulus bounded by a Jordan curve and a straight line.

1. Introduction

In this paper we consider the Douglas-Plateau problem for surfaces of
annular type bounded by a rectifiable Jordan curve and a straight line.
Recall that the Douglas-Plateau problem for two contours as follows:

Let Iy and I's be two disjoint Jordan curves in R3,
find a minimal annulus A such that 84 =T'; U .

Let 51 and S; be areas minimizing disks (when we say disks, we mean
that they are homeomorphic to the unit disk in C) such that 8S; =T,
t = 1,2, respectively. Let S be the set of all rectifiable annuli S such
that 0§ =TI'y UT'2. Then J. Douglas[4] proved that if

(1) érelg{Area(S)} < Area(S)) + Area(Ss),

then there is an area minimizing (therefore minimal) annulus bounded
by I't UT's. Now we consider the non-compact Douglas-Plateau problem
of annular type containing at least one non-compact boundary curve.
Recall there are many necessary conditions restricting the solvability of
even compact Douglas-Plateau problems for two contours, therefore the
solvability of the non-compact Douglas-Plateau problem seems should
require more hypotheses than the compact case. It is known for more
than one hundred years that for some non-compact boundaries we can
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find minimal annuli solving the corresponding “two-contour” Douglas-
Plateau problem. A classical example [10] is a minimal annulus bounded
by two parallel straight lines, a piece of a Riemann’s minimal example
which is foliated by circles and straight lines along horizontal planes.
There are some recent results about the non-compact Douglas-Plateau
problem, see [5], [6], [8], [9], etc,....

On the other hand, in 1990 F. Tomi and R. Ye[11] have shown that
every rectifiable Jordan curve in R® bounds a minimal immersion of
the punctured disk which stretches out to infinity. The argument can be
outlined as follows: Given a Jordan curve I', we choose a sequence of
expanding round circles I'y and obtain a sequence of expanding the least
area annuli which span I and I'y. Using an area estimate and Courant-
Lebesgue type argument, we control the conformal types of these annuli
and prove the convergence of their conformal parametrizations. Then we
can take the limit surface of this sequence, which is the solution of the
exterior Plateau problem for I". In this paper, we use this technique to
construct a minimal annulus bounded by a rectifiable Jordan curve and
a straight line as following:

THEOREM 1. Let ' be a rectifiable curve in R? and L be a straight
line, then there is a minimal annulus At bounded by I" U L.

| 2. Preliminaries

Let B := {z € C : |z| < 1} be the unit disk in the plane and let
X : B — R? be an immersion which is given in conformal parameters
w=u+ v, u,v € R, then the Dirichlet integral of X is defined by

D(X, B) :=%//B(|Xu|2+|Xv|2)dudv.

LeEMMA 1 (Courant-Lebesgue lemma [2]). Let X € CO(B,R3) N
CY(B,R3) and D(X) < oo. Let 2y € OB and

Z(r,0) :== X (zo + re'?),

where r,0 denote polar coordinates about zy. Take a ball Bg(z¢) with
radius 0 < R < 1 and centered at zg, and let

Bn aBR(Z()) = {ZO + Reio : 91(R) <@ < 92(R)}



Non-compact Douglas-Plateau problem 513

Then for all § € (0, R?), there is p € (6,V/8) such that for any angles 61,
6, with 01(p) < 61 < 02 < 62(p), we have

%2197

) [ |55 0] a8 < o,
01

where

1/2
n(é, R) = {é{g D(X,BnN BR(ZO))}

and in particular
(3) |Z(p,61) — Z(p, 62)| < (8, R)[61 — 6]/,

LEMMA 2 (Reflection and Rotation Theorems [2]). If a plane geodesic
which is not a straight line segment lies on a minimal surface, then
reflection in the plane of the geodesic is a congruence of the minimal
surface. If a straight line segment lies on a minimal surface, then -
degree rotation around the straight line is a congruence of the minimal
surface.

3. Construction

Let us denote horizontal planes by
I1 := {(z1,22,23) € R®: 23 = 0},
Ot := {(z1,29,0) : z1 >0}
We assume that the given straight line L is the x9-axis line, and the

rectifiable curve I' meets IIT transversely. Take a planar half-disk DE
contained in IIT with radius R > 0 as

D} :={(z1,22,0) : 2} + 25 < R2%, 2, >0}
and denote its boundary by F; = 8D];. We may assume that the pro-
jection of I" onto the horizontal plane intersects to the half-disk. Then

it is well known that I" and FE bound the least area disks St and SE,
respectively. Let us denote a solid cylinder

Cr:= {(x1,$2,$3) € R3: QZ% + iL‘% < T2}
with radius T > 0, and take 0 < Ty < R such that I' C Cp,.

LEMMA 3 (Uniform Douglas conditions [11]). For every R > Ty, we
have

4) app+ < Area(Sr) + Area(SE) — 6,
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FiGURE 1.

where apri is the infimum of area among all annulus type surfaces
spanning I and I‘;, and & > 0 is independent constant of R.
Using this lemma and the Douglas sufficient condition (1), we have
an area minimizing annulus A; c R3 such that
+ +
0A}, =T UT%L.

Now by Lemma 2, we can rotate AE by the m-degree along the straight
line L. Denote

Roty : R® — R3
by the m-degree rotation around the straight line L. Then we have a
minimal surface Ar which is the union of AE and the rotated one, i.e.,

AR = AE UROtL(A;) U(LNCRr).

Conformally, Ag is equivalent to a 3-fold connected domain Q,(g) C C,
which is also symmetric under a conformal mapping of the plane. So we
can take the three boundary curves of it as following:

0 r) = YUY U (R,
y:={2€C:|z2-2|=1}, F:={-2:z€7},
’YT‘(R) = {zeC:|z| <T(R)}
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Let us define a minimal immersion, i.e., a harmonic conformal mapping
Xp: Qup) — Ar C R?
such that Xg|, =T and Xgly =T = Rotr(T).

CLAaM 1. If Ry, — oo, then there is a subsequence of Xpg, which
converges to a conformal harmonic map X :  — R3 Iocally smoothly
in the interior of the unbounded domain €2 which is defined by

Q:=C\D,UD5,

where D, and Dy are the disks in the plane bounded by 7 and ¥, re-
spectively.

Throughout this article we assume that Tp < T, where I' C Cfp,.
Let us denote the preimage of the subset of Ar contained in the solid
cylinder with radius 7" > 0 by Ag 7, that is,

AR,T = Xgl(AR N CT)

Denote the connected component of Ag r whose boundary contains yU%
by AZ%,T- Recall, in a minimal surface, the Dirichlet integral is equal to
the area of a surface. Since the orthogonal projection onto the z;xz;-plane
does not increase area, we can get

(5) D(Xg, Apr) > 7T? ~ 21d},
(6) D(Xg, Qpry \ Arr) > 7R* — nT?,
where dr is the diameter of I'. Recall Douglas condition (4) implies that
D(Xg,ArT) = D(XR, Q) — D(XR:, Qrry \ ART)
(7) < nR*+ 2ar — (7R? — nT?)
= 772 4 2ar

if ar := Area(Sr) where Sr is the least area disk bounded by I'. Thus
for all To < Th < T, together with (5) and (7), we have,

(8) D(Xg, Arm, \ Ar1y) < 7T2 — 7TE + 2ar + 2nd2.
Now consider a point 2y € 8A7%’T \ 7 U # such that
distc (20, 0AR o \ Y UF) = 10,
where 7g is the distance between aA;Yz,QT\’YU’_Y and BA}’%’T\'yUf‘y. Denote
Zr(r,0) :== Xg(z0 + re'?),
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FIGURE 2.

where 7, 8 denote polar coordinates about zg. If rg < 1, then by (2) there
exists p € (rg,/To) such that

07 Ar 1/2
- < *
(9) A* 69(p76)’d0_{logl/TOD(XR’A)} 5
where

A* = BW(ZQ) N (A’I)/%,ZT \ AR,T),
8* = aBp(Zo) M (A’IY%,ZT \ AR,T) .

Notice, since rg < p we can find an arc { C 9* connecting BA}wT \yUd
and AR \YU#. So the length of Xg(¢) must be larger than 7'. Since
the length of Xg(() is less than that of Xg(0*), together with (8) and
(9), we have
2 4r
log1/ro

(4nT? — nT% + 2ar + 27d?)

as well as
rg > exp (—4nT2(37T? + 2ar + 27df))
= exp (—12n% — 4n(2ar + 27d})T?)
> exp(—8mar — 207%).

Observe this inequality also holds if rg > 1. Take a number N > 0 such
that

2N =To+14¢ 0<e<l,
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then
distc (0, OART \YUX)
N
= e (007 pup \ YU F, DN i \7U)
> N exp(—8mar — 207?)
>c logT

for some constant ¢ > 0 satisfying
N =logy T —logy(To + 1+ €) > ¢ exp(8mar + 207%) log T.
Notice that we can take ¢ independently with the value T'. In particular,
r(R) = distc (0, OArRr\YU¥) > c logR.
Take 3 < r < r(R), and let T satisfy that
distc (0, OART\YU7J) =T

Then Xg(Q,) C Cr clearly, so

D(Xg, %) < D(Xg,ArT)
(11) < nT? + 2ar

< nelr/c 4 2ar

by (10). It leads us to prove that there is a subsequence of Xpg, and a
conformal harmonic map X € C%(Q, R3) N C¥(Int(Q2), R3) with

Q = C \ ny U Dry
such that

e Xp, converges to X uniformly on every (2,.
e Xp, converges to X weakly in each Hi(€,, R3).
e Xp, converges to X locally smoothly in Int(£2).

CLAIM 2. The sequence of minimal immersions X g, is equicontinuous
on the boundary curves 0 =y U#.

Let M := 7el%¢ 4 2ar as in (11), then for all r, < 5 we have
(12) D(XRg,,Br, NQ) < M.
Recall the set of surfaces Xpg, satisfy the three-point condition for v if
(13) Xr,(wj) =Q;, J=1,2,3,
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for some wy, w2, w3 € v and Q1,Q2,Q3 € I'. The condition (3) of the
Courant-Lebesgue lemma can be applied as follows: Since T is the topo-
logical image of a unit circle C := {z € C : |z = 1} for every ¢ > 0
there exists a number A(ex) > 0 with the following property: Any pair
of points P, () € T with

0 <|P—Q| < Aeg)
decompose I' into two arcs I'1 (P, Q) and I'2(P, @) such that
length(T'1 (P, Q)) < €

holds. Hence, if 0 < € < e := minjx; |Q; — Qkl, 5,k = 1,2,3, then
I'1(P, Q) can contain at most one of the points Q1, @2, Q3 appearing in
(13). Let d € (0,1) be a fixed number with

2vd < min |w; — wy)|,
ik

where w;, we, ws appear in (13). For an arbitrary e, € (0, e), we choose
some number d = i (ex) such that

drM V2
{1og1/5k} < Mew)

and 6 < d. Consider an arbitrary point z; on v, and let p € (dx, v/0r)
be some number such that the images P := Xpg, (2), Q := Xg,(2/) of
the two intersection points z, 2’ € v and 8B,(z1) satisfy

M V2
P_Ql<{ 2"
| Q|——{10g1/5k}

Then we infer that |P— Q| < A(ex), whence length(I'1 (P, Q)) < ¢ holds.
Because of € < e the arc I'1 (P, Q) contains at most one of the points
Q1,Q2,Q3. On the other hand, if the sequence Xpg, satisfy the three-
point condition then Xg, (v N B,y(21) contains at most one of the points
@Q; and must therefore coincide with the arc I'1 (P, Q).

On the contrary, we assume that Xg, are not equicontinuous on ~.
Then, together with the condition (12), we can say that they do not
satisfy the three-point condition, see Lemma 3.2 in [1]. Observe then we
can take a point wg € v and rx € (g, v/d%) such that

I (P: Q) 5’é XRk (’7 n Brk (wO))

in other words, the complementary arc

I :=T\ Xg,(yN By (2))
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has the smaller length ¢;. Let ¢ — 0 as k — oo, then it follows that
klim length(I';,) = 0.

And let §; — 0 as k — oo, too. Then, via the Courant-Lebesgue lemma
again, we have

0Xp,

30 do

length (Xg, (0B, (2) N Q) = /
BBy, (2)NQ;

<{ A M }1/2
= llog1/Vé

—0 as k— oo.

Notice that together with the arc 8B,, (2) N Q and a simple regular
arc &, C Int(Q)\ By, (z) which lies within short distance to -y such that

lim length (XR;C (¢rp)) = lim length ('y) =0
k—o0 k—oo

and rounding off corners, one easily constructs a closed regular Jordan
curve n C Int(Q,(p)) satisfying

1. The length of image’s Xg, (%) tends to zero as k — oo.
2. M cuts the domain {2 (g,) into two annular regions.

Now we can apply the cut-paste argument to obtain disk type surfaces
A,lC and A? such that the first surface bounds I' and the last one bounds
FEk such that

klim (Area(A}) + Area(A7) — Area(AEk)) =0
—00

contradicts to Lemma 1, however. It leads us that the sequence Xg,
must be equicontinuous on <, and so on %4 for the symmetricity. There-
fore, the limit curve X () is a topological parametrization of I'. Let us
denote

A= X(Q).

Since (Ag, N) \ (C UT) tends to the straight line L as k — oo, the
limit surface A also contains L in its interior and then rotational sym-
metric under the line. Therefore we can take a minimal annulus AT C A
bounded by I' and L, it finished the proof of the main theorem of this
article.
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