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RINGS WHOSE PRIME RADICALS
ARE COMPLETELY PRIME

KwaNGg-Ho KaANG, BYunGg-Ok KiMm,
SANG-JiG NAM, AND Su-HO SOHN

ABSTRACT. We study in this note rings whose prime radicals are
completely prime. We obtain equivalent conditions to the complete
2-primal-ness and observe properties of completely 2-primal rings,
finding examples and counterexamples to the situations that occur
naturally in the process.

Throughout all rings are associative with identity. Given a ring R,
the prime radical and the set of all nilpotent elements are denoted by
P(R) and N(R), respectively. In this note we concern some conditions
which are generalizations of domains. A ring is called reduced if it has
no nonzero nilpotent elements; and a ring R is called 2-primal if P(R) =
N(R), due to Birkenmeier-Heatherly-Lee[3]. It is obvious that a ring R
is 2-primal if and only if R/P(R) is a reduced ring. Hirano[7] used the
term N-ring for what is called a 2-primal ring, showing that an N-ring
R is strongly m-regular if and only if the n by n full matrix ring over R
is strongly w-regular, where n is a positive integer. The class of 2-primal
rings contains commutative rings and reduced rings.

Given a ring R, rr(—) (Ir(—)) is used for the right (left) annihilator
over R. An element c of a ring R is called right reqular if rr(c) = 0,
left reqular if Ig(c) = 0, and regular if Tr(c) = 0 = lg(c). A ring is
called a domain if every nonzero element is regular. It is well-known
that a square matrix over a division ring is regular if and only if it is
invertible. An ideal I of a ring R is called completely prime if R/I is a
domain. We shall call a ring R completely 2-primal if R/P(R) is a do-
main. It is obvious that domains are completely 2-primal and completely
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2-primal rings are 2-primal; but commutative rings and reduced rings
need not be completely 2-primal. We use P,(R) for the intersection of
all completely prime ideals of a ring R, and define C(P(R)) = {r € R |
r + P(R) is regular in R/P(R)}. Shin proved that R is 2-primal if and
only if every minimal prime ideal of R is completely prime {14, Propo-
sition 1.11]; while Birkenmeier-Heatherly-Lee proved that a ring R is
2-primal if and only if P(R) = P.(R) [3, Proposition 2.1].
The following concepts are due to Shin[14]:

N(P)={a € R|aRbC P(R) for some b € R\P};
Np = {a € R| ab € P(R) for some b € R\P};

Np ={a€ R|a™ € Np for some positive integer m},

where P is a prime ideal of a ring R. Note that N(P) C P, N(R) C Np,
and N(P) C Np C Np. :

PROPOSITION 1. Given a ring R the following conditions are equiva-
lent:

(1) R is completely 2-primal;

(2) R is 2-primal and P.{R) is completely prime;

(3) Every minimal prime ideal of R and P.(R) are both completely
prime;

(1) O(P(R)) = R\P(R);

(5) N(P) = Np = Np = P(R) for any minimal prime ideal P of R;

(6) N(P) = Np = Np = P(R) for any minimal completely prime
ideal P of R.

PRrOOF. The proofs of (1)<(2) and (2)<(3) are obtained from (3,
Proposition 2.1] and [14, Proposition 1.11]. (1)<>(4) is a restatement of
the definition.

(1)=(5): Let P be a minimal prime ideal of R. Clearly N(P) C Np C
Np. Let a € Np, then a™ € P(R) for some b € R\P and positive
integer n. Since R/P(R) is a domain by the condition, aRb C P(R)
and so a € N(P); hence we have N(P) = Np = Np. By [14, Corollary
1.9], N(P) = n{Q | Q is a prime ideal of R with @ C P}. But P is a
minimal prime ideal of R and so N(P) = P. From the condition that
R/P(R) is a domain, P(R) is the unique minimal prime ideal of R and
thus N(P) ZNP :N—p = P(R)

(5)=(6): Given a € N(R) with a™ = 0, we have a € Np = Np =
N(P) = P(R) for any minimal prime ideal P of R by the condition,
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verifying that N(R) = P(R) (i.e., R is 2-primal). So every minimal
prime ideal of R is completely prime by [14, Proposition 1.11]; hence
an ideal of R is a minimal prime ideal if and only if it is a minimal
completely prime ideal.

(6)=>(1): Let P be a minimal completely prime ideal of R. Note that
R is 2-primal by the condition that Np = P(R), and so any minimal
completely prime ideal is a minimal prime ideal by [14, Proposition
1.11]. So P is a minimal prime ideal of R and N(P) = P by [14, Corollary
1.10]; hence we have P = N(P) = Np = Np = P(R), proving that R is
completely 2-primal. O

The indez (of nilpotency) of a nilpotent element z in a ring R is the
least positive integer n such that ™ = 0. The indez of a subset I of R
is the supremum of the indices of nilpotency of all nilpotent elements in
I. If such a supremum is finite, then I is said to be of bounded indezx.

LEMMA 2. Let R be a ring of bounded index. If I is a nonzero nil
one-sided ideal of R then I contains a nonzero nilpotent ideal.

PrOOF. By Levitzki’s Lemma [6, Lemma 1.1] or [11, Lemma 5. O

A ring R is called strongly prime if R is prime with no nonzero nil
ideals, and an ideal P of R is called strongly prime if R/P is strongly
prime. We use N,.(R) to denote the upper nilradical of a ring R, i.e., the
unique maximal nil ideal of R by [13, Proposition 2.6.2].

COROLLARY 3. Suppose that a ring R is of bounded index. Then the
following conditions are equivalent:

(1) R is completely 2-primal;

(2) P.(R) is completely prime with N(R) = N,.(R) = P.(R) =
P(R);

(3) Every minimal strongly prime ideal of R and P.(R) are both
completely prime;

(4) N(P) = Np = Np = P(R) for any minimal strongly prime ideal
P of R.

ProoF. Since R is of bounded index by hypothesis it follows that
R/P(R) is also of bounded index because P(R) is nil; thus we have
P(R) = N,(R) by Lemma 2; hence R is 2-primal if and only if N(R) =
P(R) = N,(R). Note that N(R) = N,(R) if and only if every minimal
strongly prime ideal of R is completely prime [8, Corollary 13]. Thus if
R is a 2-primal ring of bounded index, then we have that an ideal I of R
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is a minimal prime ideal if and only if I is a minimal completely prime
ideal if and only if I is a minimal strongly prime ideal, with the help
of [14, Proposition 1.11]. So we obtain the equivalences by Proposition
1. O

The hypothesis and conditions in Proposition 1 and Corollary 3 are
not superfluous by the following.

EXAMPLE 4. (1) The hypothesis in Corollary 3 is not superfluous. Let
V be a vector space over F, the field of integers modulo 2, such that V is
countably infinite dimensional with a basis {v(0),v(1),v(-1),...,v(7),
v(—1),...}. Note that there is a unique endomorphism f(i) of V for
i=1,2,... such that f(i)(v(4)) = 0 if j = 0(mod 2¢) and f(i)(v(5)) =
v(j — 1) if § #0(mod 2%). Let S be the ring, without identity, of endo-
morphisms of V generated by the endomorphisms f(1), f(2),...; next
let R be the ring obtained from S by adjoining the identity map of V.
Then R is semiprime and N,(R) = S by [2, p.540]. Since R/S = F
and N(R) = S # 0, N.(R) = N(R) is the only strongly prime ideal
of R. Next since every completely prime ideal of R must contain S, we
have § = P.(R) = N,.(R) = N(R). Consequently P.(R) is completely
prime. However R is not of bounded index and R is not completely
2-primal since R is semiprime.

(2) The conditions in Proposition 1 and Corollary 3 are not superflu-

ous. Let D be a domain and R = (g g) , the 2 by 2 upper triangular
0 D

matrix ring over D. Since P(R) = 0 0 and R/P(R) =D& D, R

is 2-primal but not completely 2-primal. P.(R) = P(R) = N(R) =
D D 0 D 0 D .
N-(R) = ( 0 0 ) N (O D) = (0 0 ), so P.(R) is not completely

prime.

For a commutative case, let R be the ring Zg of integers modulo
6. Since P.(R) = P(R) = N(R) = N.(R) = 2RN3R = 0, P.(R)
is not completely prime and R is not completely 2-primal; but R is
commutative (so 2-primal).

Notice that each prime ideal in the previously mentioned rings is
minimal prime, minimal strongly prime, and completely prime. O

A ring is called abelian if every idempotent in it is central.

PROPOSITION 5. Let R be a completely 2-primal ring. Then the iden-
tity is the only nonzero idempotent (so R is abelian).
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PROOF. Let 0 # €2 = e € R, then e ¢ P(R). Since R/P(R) is a
domain, 1 + P(R) = e + P(R) and (1 —¢)2 = 1 — e € P(R); hence
l-e=0ande=1. O

The converse of Proposition 5 is not true in general by Example 4(1).
For, the Jacobson radical of R is N,.(R) and R is a local ring with
R/N,(R) = F; hence the identity is the only nonzero idempotent.

PROPOSITION 6. The class of completely 2-primal rings is closed un-
der subrings.

- PROOF. Let R be a completely 2-primal ring and S be a subring of R.
Then R is clearly 2-primal, and so the subring S is also 2-primal by [3,
Proposition 2.2]. Take a € S with a ¢ P(S), then a is not nilpotent since
P(S) = N(S), forcing a ¢ P(R) since P(R) = N(R). Here assume a ¢
C(P(S)) with C(P(S)) = {r € S| r + S is regular in S/P(S)}. Then
there is b € S such that b ¢ P(S) and ab (so ba) is contained in P(S) =
N(S) € N(R) = P(R). Since R/P(R) is a domain and a ¢ P(R), we
have b € P(R). Notice that P(S) = P(R) NS because P(S) = N(S)
and P(R) = N(R). So we get b € P(S), a contradiction; consequently
a € C(P(S)). Thus C(P(S)) = S\P(S) and S is completely 2-primal.[]

The class of 2-primal rings is closed under direct sums [3, Proposition
2.2]; however this result does not hold for completely 2-primal rings by
D & D with D a domain. Closely related to Proposition 6, one may
consider aflirmative situations for factor rings of completely 2-primal
rings. However this argument needs not hold by the following.

EXAMPLE 7. Let Z be the ring of integers and Z[z] be the polynomial
ring with an indeterminate x over Z. Then clearly Z[x] is completely 2-
primal, but W—)@[j-]w)w is not completely 2-primal for all a,b € Z
with a # b. In fact, ((a+2z) + D((b+2)+I)=0for (a+z)+1#0
and (b+z)+ I # 0, but P(S) = 0, where S = (#Lﬁ—] and

O

(b+x)Z
I=(a+z)(b+x)Z[z].

Let R be a ring and UT M, (R) be the n by n upper triangular ma-
trix ring over R, where n is a positive integer. If R is 2-primal then
so is UTM,(R) by [3, Proposition 2.5]; however this result does not
hold for completely 2-primal rings by Proposition 5 since UT M, (R) is
nonabelian when n > 2. But some kind of subrings of UT' M, (R) are
completely 2-primal as in the following.

PROPOSITION 8. Following [13, Example 2.7.38], let S be a ring and
T be the n by n upper triangular matrix ring over S, where n may
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be infinite. Let N = {(a;;) € T | a;; = 0 for all i and there is k such
that a;; = 0 for i > k} and set R be the subring of T generated by the

ide-ntity and N. Then S is completely 2-primal if and only if so is R.
Proor. It suffices to show the necessity by Proposition 6. Notice that
every prime ideal of R is of the form {r € R | the set of all diagonal
entries of 7 is P} O N, where P is any prime ideal of S. So we obtain
ﬁ% = %7; hence R is completely 2-primal since S is completely 2-
primal by the condition. O

The following is proved by Propositions 6 and 8.

COROLLARY 9. Let S be a ring and define

a a2 aiz - A1n
0 a a3 - a2,
R= |a’aijes ’
0 0 0 v a(n_l)n
0 0 0o - a

where n is a positive integer. Then R is completely 2-primal if and only
ifsois S.

A ring R is called strongly m-regular if for every a in R there exist
a positive integer n, depending on a, and an element b in R satisfying
a™ = a™*1b. It is obvious that a ring R is strongly n-regular if and only
if R satisfies the descending chain condition on principal right ideals of
the form aR D a?R D -, for every a in R. Dischinger[4] showed that
the strongly m-regularity is left-right symmetric. A ring R is called «-
regular if for each a € R there exist a positive integer n, depending on a,
and b € R such that a™ = a™ba™. Strongly m-regular rings are m-regular
by Azumaya[l], and it is easy to show that the Jacobson radicals of 7-
regular rings are nil. J(R) denotes the Jacobson radical of given a ring
R. The following result is similar to (7, Theorem 1].

ProPOSITION 10. Suppose that a ring R is completely 2-primal. Then
the following conditions are equivalent:
(1) R is m-regular;
(2) R is a local ring with P(R) = J(R);
(3) R/P(R) is strongly m-regular and P(R) is the unique prime ideal
in R;
(4) R/P(R) is m-regular and P(R) is the unique prime ideal in R;
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(5) R/P(R) is m-regular and P(R) is the unique primitive ideal in
R;

(6) R/P(R) is m-regular and P(R) is the unique maximal ideal in
R;

(7) R is strongly m-regular.

PrOOF. (1)=(2): J(R) is nil since R is w-regular, and so R being
completely 2-primal implies J(R) = P(R). Take a ¢ P(R). Since R is
m-regualr and completely 2-primal, a™b and ba™ are nonzero idempotents
in R for some b € R\P(R) and positive integer n; hence a™b =1 = ba"
by Proposition 5 and so «a is invertible.

(2)=(3), 3)=(4), (4)=(5), (5)=(6), (6)=(4), and (7)=>(1) are ob-
vious.

(3)=(7): By [5, Theorem 2.1].

(4)=>(2): For a ¢ P(R), a™ + P(R) = (a™ + P(R))(b + P(R))(a™ +
P(R)) for some b € R and positive integer n because R/P(R) is =-
regular. Since R is completely 2-primal by hypothesis, a™b + P(R) and
ba™ + P(R) are both nonzero idempotents. But P(R) is idempotent-
lifting, and hence there are nonzero idempotents e, f € R such that
e+ P(R) = a"™b+ P(R) and f + P(R) = ba" + P(R). By Proposition
5, e and f are the identity of R; hence 1 —a™b,1 — ba™ € P(R) and it
follows that « is invertible. O

Given a ring R, the polynomial ring and the formal power series ring
over R are denoted by R[z] and R[[z]] with = the indeterminate, respec-
tively; also R[X] and R[[X]] denotes the polynomial ring and the formal
power series ring over R with X a set of commuting indeterminates over
R, respectively. Birkenmeier-Heatherly-Lee proved that a ring R is 2-
primal if and only if so is R[X] [3, Proposition 2.6]. In the following we
have the same result for completely 2-primal rings.

PROPOSITION 11. A ring R is completely 2-primal if and only if so is
R[X].

PrOOF. It is well-known that P(R[X]) = P(R)[X], so we have

R o R[X] _ R[X]
X = P = P

Thus R[X] is completely 2-primal if so is R, and the converse follows by
Proposition 6. O
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However this result does not hold for formal power series rings by the
following.

ExXAMPLE 12. Let S be a division ring and T be the n by n upper
triangular matrix ring over S, where n is infinite. Let N = {(a;;) €
T | a;; = 0 for all 4 and there is k such that a;; = 0 for ¢ > k} and
set R be the subring of T generated by the identity and N. Then R
is completely 2-primal by Proposition 8. Next we use a method of [12,
Example 1.1]. Let e;; be the infinite matrix over S with (¢, j)-entry 1
and elsewhere 0, and take

n—1

f(.’L‘) = e + (634 + 655).%2 +--- 4+ (2?:0

e(2n42i—1)(2n+20))T " oy

n—1_
g(x) = easx + (€45 + 667)332 +e (2?:0 16(2n+2i)(2"+2i+1))mn +oe

in R[[z]]. Then f(z) and g(z) are nilpotent of index 2 but f(z) + g(z)
is non-nilpotent. Hence f(x) ¢ P(R[[z]]) or g(z) ¢ P(R|[[z]]), implying
that R[[z]] is not completely 2-primal. O

Note that the ring in the preceding example is not of bounded index,
but we obtain an affirmative situation when given rings are of bounded
index as follows.

ProposITION 13. Suppose that R is a ring of bounded index. Then
R is completely 2-primal if and only if so is R[[X]].

PRrOOF. It suffices to show the necessity by Proposition 6. P(R[[X]])
C P(R)[[X]] by [10, Corollary 1.2]. P(R) is nil of bounded index by
hypothesis, so P(R)[[X]] is also nil of bounded index by [9, Theorem
2.4]; hence we have P(R)[[X]]) = P(R[[X]]) by Lemma 2, considering

the nil ideal llzgﬁf[ﬁ)ﬁ]}; of ng[ﬁ]”) that is of bounded index. Consequently

RIX]] _ _RIX)] . R

PRIXT) ~ PRIX] PG~

and thereforeR[[X]] is completely 2-primal if so is R. O

Given a ring R it is obvious that C(0) is contained in C(P(R)); hence
one may conjecture that the converse also holds for completely 2-primal
rings, based on the definition. However it needs not be true by the
following.

EXAMPLE 14. Let Z be the ring of integers and Z,, be the ring of
integers module n, say n > 2 and Z, = {0,1,...,n—1}. Set R =
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{(Tg Zz) |meZandac Zn} with matrix operations and module

operations. Then R is completely 2-primal because P(R) = (g Z()n)

and P—g;) >~ 7. But we have

m a

C(0) = {( 0 r_n> € R | m # 0 is invertible in Zn}

and

oy =mPR ={ (5 1) er] s#0}.

showing C(0) & C(P(R)). 0

If completely 2-primal rings are 7m-regular then C(0) coincides with
C(P(R)) by Proposition 10.
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