INJECTIVE COVERS OVER COMMUTATIVE NOETHERIAN RINGS OF GLOBAL DIMENSION AT MOST TWO II

HAE-SIK KIM AND YEONG-MOO SONG

ABSTRACT. In studying injective covers, the modules C such that $\operatorname{Hom}(E,C)=0$ and $\operatorname{Ext}^1(E,C)=0$ for all injective module E play an important role because of Wakamatsu's lemma. If C is a module over the ring k[[x,y]] with k a field, the class of these modules C contains the class \bar{D} of all direct summands of products of modules of finite length ([3, Theorem 2.9]). In this paper we show that every module over any commutative ring has a \bar{D} -preenvelope.

1. Introduction

Assume throughout the paper that R denotes a commutative ring with identity. Let \mathcal{X} be a class which is closed under isomorphism, direct summands and finite direct sums. An \mathcal{X} -envelope of a module M is a homomorphism $\phi: M \to X$ with $X \in \mathcal{X}$ such that the following two conditions hold;

- (1) $\operatorname{Hom}_R(X, X') \to \operatorname{Hom}_R(M, X') \to 0$ is exact for any $X' \in \mathcal{X}$,
- (2) Any $f: X \to X$ with $f \circ \phi = \phi$ is an automorphism of \mathcal{X} .

If $\phi: M \to X$ satisfies (1) and perhaps not (2), ϕ is called an \mathcal{X} -preenvelope of M. Dually, an \mathcal{X} -precover of M is a homomorphism $\psi: X \to M$ with $X \in \mathcal{X}$ such that $\operatorname{Hom}_R(X', X) \to \operatorname{Hom}_R(X', M) \to 0$ is exact for any $X \in \mathcal{X}$ and if an \mathcal{X} -precover $\psi: X \to M$ of M satisfies the condition that any $f: X \to X$ with $\psi \circ f = \psi$ is an automorphism of X, then $\psi: X \to M$ is called an \mathcal{X} -cover of M.

Note that an \mathcal{X} -envelope(an \mathcal{X} -cover, respectively) of a module is unique up to isomorphism, if it exists. By convention, (pre)envelopes

Received November 4, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 16D50, 16E30.

Key words and phrases: injective cover.

This paper was supported in part nondirected research fund from Sunchon National University.

and (pre)covers are named according to the name of the class \mathcal{X} . For example, an injective cover is an \mathcal{X} -cover where \mathcal{X} is the class of injective modules.

We recall that for a class \mathcal{X} of R-modules, \mathcal{X}^{\perp} consists of all R-modules K such that $\operatorname{Ext}^1_R(X,K)=0$ for all $X\in\mathcal{X}$ and ${}^{\perp}\mathcal{X}$ consists of all R-modules G such that $\operatorname{Ext}^1_R(G,X)=0$ for all $X\in\mathcal{X}$. (See [5, p.29]).

Wakamatsu's lemma ([5, Lemma 2.1.1] or [4]) says that if $\psi: X \to M$ is an \mathcal{X} -cover of an R-module M and if \mathcal{X} is closed under extensions, then $\operatorname{Ker} \psi \in \mathcal{X}^{\perp}$. Conversely, if $\psi: X \to M$ is a surjection with $X \in \mathcal{X}$ and $\operatorname{Ker} \psi \in \mathcal{X}^{\perp}$, then for any $X' \in \mathcal{X}$, $\operatorname{Hom}_R(X', X) \to \operatorname{Hom}_R(X', M) \to \operatorname{Ext}^1_R(X', \operatorname{Ker} \psi) = 0$ is exact. So $\psi: X \to M$ is an \mathcal{X} -precover. Such a precover is called a *special* \mathcal{X} -precover of M.

2. Rings with global dimension at most 2

From the results in [2, Proposition 8.1], we know that if $\psi: E \to M$ is an injective cover with kernel K, then $\operatorname{Hom}_R(\bar{E},K)=0$ and $\operatorname{Ext}^1_R(\bar{E},K)=0$ for all injective module \bar{E} . Conversely, given such a module K, if $K\subset E$ is an injective envelope, then the natural map $E\to E/K$ is an injective precover. Moreover, the diagram

can only be completed to a commutative diagram by id_E .

PROPOSITION 2.1. [3] If a module C over R = k[[x,y]] with k a field is a direct summand of a product of modules of finite length, then C has the property that $\operatorname{Hom}_R(E,C) = 0$ and $\operatorname{Ext}_R^1(E,C) = 0$ for all injective R-modules E.

Let \mathcal{C} be the category of R-modules C such that $\operatorname{Hom}_R(E,C)=0$ and $\operatorname{Ext}^1_R(E,C)=0$ for all injective modules E and let $\bar{\mathcal{D}}$ be the category of all direct summands of products of modules of finite length. First, we need the lemma.

LEMMA 2.2. Given two modules S_1, S_2 , there exists a set of short exact sequence $0 \to S_1 \to G \to S_2 \to 0$ such that for any such short

exact sequence $0 \to S_1 \to H \to S_2 \to 0$, there is a commutative diagram;

$$0 \longrightarrow S_1 \longrightarrow H \longrightarrow S_2 \longrightarrow 0$$

$$\downarrow id \qquad \qquad \downarrow id \qquad \qquad \downarrow id$$

$$0 \longrightarrow S_1 \longrightarrow G \longrightarrow S_2 \longrightarrow 0$$

PROOF. Let S_1, S_2 be any modules and let $X = S_1 \times S_2$ as a set.

Let $0 \longrightarrow S_1 \stackrel{g}{\longrightarrow} G \stackrel{h}{\longrightarrow} S_2 \longrightarrow 0$ be any short exact sequence. For any section $\sigma: S_2 \to G$ of h as a function of sets, the function $\phi: X \to G$ defined by $\phi(x_1, x_2) = g(x_1) + \sigma(x_2)$ is a bijection. Hence X can be made an R-module in a natural way such that $\phi: X \to G$ is an isomorphism of R-modules. Let this module be G' (so G' = X as sets).

Then there is an exact sequence $0 \longrightarrow S_1 \xrightarrow{g'} G' \xrightarrow{h'} S_2 \longrightarrow 0$ of R-modules such that the diagram

$$0 \longrightarrow S_1 \xrightarrow{g} G \xrightarrow{h} S_2 \longrightarrow 0$$

$$\downarrow id \qquad \qquad \downarrow id \qquad \qquad \downarrow id$$

$$0 \longrightarrow S_1 \xrightarrow{g'} G' \xrightarrow{h'} S_2 \longrightarrow 0$$

is commutative.

Theorem 2.3. For any ring R, every R-module has a $\bar{\mathcal{D}}$ -preenvelope.

PROOF. Let $S_1 = \{S \cong R/\mathcal{M} | \mathcal{M} \text{ is a maximal ideal of } R\}$ be the set of simple R-modules. Then every simple R-module S' is isomorphic to some R-module $S \in S_1$. For any two modules $S_1, S_2 \in S_1, G = S_1 \times S_2$ can be made into an R-module and $0 \longrightarrow S_1 \longrightarrow G \longrightarrow S_2 \longrightarrow 0$ is a short exact sequence by Lemma 2.2.

Let S_2 be the set of all R-modules G obtained by the above argument for each $S_1, S_2 \in S_1$. If M is an R-module of length two, then there exists a simple submodule S of M such that

$$0 \longrightarrow S \longrightarrow M \longrightarrow M/S \longrightarrow 0$$

is exact. Since $M/S \in \mathcal{S}_1$, $M \cong T$ for some $T \in \mathcal{S}_2$. Similarly, let \mathcal{S}_k be the set of all R-modules $S_1 \times S_{k-1}$ for each $S_1 \in \mathcal{S}_1$ and $S_{k-1} \in \mathcal{S}_{k-1}$. Then every R-module N of length k is isomorphic to a module $S_k \in \mathcal{S}_k$.

Now set $S = \bigcup_{i=1}^{\infty} S_i$. Then every R-module of finite length is isomorphic to some R-module $S \in S$ of the same length. So every module in the class \bar{D} is a direct summand of products of modules in S. Let

M be an R-module. For any $S \in \mathcal{S}$, let S^* be the direct product of $\operatorname{Hom}_R(M,S)$ of S and let $\mathcal{O}_S: M \to S^*$ be defined by $\mathcal{O}_S(m) = (f(m))$ for $m \in M$ and $f \in \operatorname{Hom}_R(M,S)$.

Let $D = \prod_{S \in \mathcal{S}} S^*$ and $\phi : M \to D$ be a map such that $\phi(m) = \prod_{S \in \mathcal{S}} \mathcal{O}_S(m)$. Then $D \in \overline{\mathcal{D}}$. For any map $\psi : M \to H$ with $H \in \overline{\mathcal{D}}$, there exist $S_\alpha \in \mathcal{S}(\alpha \in I)$ such that H is a direct summand of $\prod_{\alpha \in I} S_\alpha$. So $H = \prod_{\alpha \in I} H_\alpha$ for some direct summands H_α of S_α for each α .

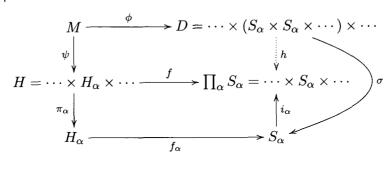
Let $f_{\alpha}: H_{\alpha} \to S_{\alpha}$ and $g_{\alpha}: S_{\alpha} \to H_{\alpha}$ be the canonical maps. Let $f = \prod_{\alpha \in I} f_{\alpha}$ and $g = \prod_{\alpha \in I} g_{\alpha}$. To show that ϕ is a $\bar{\mathcal{D}}$ -preenvelope of M, it is sufficient to show that there exists a homomorphism $h: D \to \prod_{\alpha \in I} S_{\alpha}$ such that $h \circ \phi = f \circ \psi$ and so, $(g \circ h) \circ \phi = \psi$.

$$M \xrightarrow{\phi} D$$

$$\psi \downarrow \qquad \qquad \downarrow h$$

$$H \xrightarrow{f} \prod_{\alpha} S_{\alpha}$$

Since for each α , $f_{\alpha} \circ \pi_{\alpha} \circ \psi$ is an R-linear map from M to S_{α} , define $h: D \to \prod_{\alpha \in I} S_{\alpha}$ by the product of the $\sigma = f_{\alpha} \circ \pi_{\alpha} \circ \psi$ -th projections for each $\alpha \in I$ and zero maps for $S \neq S_{\alpha}(\alpha \in I)$, where $\pi_{\alpha}: H \to H_{\alpha}$ is the α -th canonical projection. Then $h \circ \phi = f \circ \psi$ and so ϕ is a $\bar{\mathcal{D}}$ -preenvelope of M.

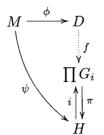


PROPOSITION 2.4. If $D \in \overline{\mathcal{D}}$, then $\phi : M \to D$ is a $\overline{\mathcal{D}}$ -preenvelope if and only if any diagram

can be completed to a commutative diagram whenever G has finite length.

 \Box

PROOF. Let $H \in \bar{\mathcal{D}}$. Then H is a direct summand of $\prod_{i \in I} G_i$ for some G_i of finite length. Since $\operatorname{Hom}_R(D,G_i) \to \operatorname{Hom}_R(M,G_i) \to 0$ is exact for each $i \in I$, $\prod_{i \in I} \operatorname{Hom}_r(D,G_i) \to \prod_{i \in I} \operatorname{Hom}_R(M,G_i) \to 0$ is exact, that is $\operatorname{Hom}_R(D,\prod_{i \in I} G_i) \to \operatorname{Hom}_R(M,\prod_{i \in I} G_i) \to 0$ is exact. So for any diagram



with the canonical maps i and π , there exists a linear map $f: D \to \prod_{i \in I} G_i$ such that $f \circ \phi = i \circ \psi$. Therefore $(\pi \circ f) \circ \phi = \psi$. Thus $\phi: M \to D$ is a preenvelope. The converse is trivial.

EXAMPLE 2.5. Let R be a ring, M a finitely generated module and Ω the set of maximal ideals of R. If $f: M \to G$ is a homomorphism with G having finite length. Then there is $\mathcal{M}_i \in \Omega(1 \le i \le s)$ such that $\mathcal{M}_1 \mathcal{M}_2 \cdots \mathcal{M}_s G = 0$ by [1, Corollary 2.17]. So $\operatorname{Ker} f \supset \mathcal{M}_1 \mathcal{M}_2 \cdots \mathcal{M}_s M$ for some $\mathcal{M}_1, \mathcal{M}_2, \cdots \mathcal{M}_s \in \Omega$.

But for any such $\mathcal{M}_1, \mathcal{M}_2, \cdots \mathcal{M}_s$, $\frac{M}{\mathcal{M}_1 \mathcal{M}_2 \cdots \mathcal{M}_s M}$ has finite length, and so $M \to \prod \frac{M}{\mathcal{M}_1 \mathcal{M}_2 \cdots \mathcal{M}_s M}$ is a $\bar{\mathcal{D}}$ -preenvelope (over all finite families $\mathcal{M}_1, \mathcal{M}_2, \cdots \mathcal{M}_s \in \Omega$. For example, with $R = \mathbb{Z}, \mathbb{Z} \to \prod_{n=2}^{\infty} \mathbb{Z}/n\mathbb{Z}$ would be a $\bar{\mathcal{D}}$ -preenvelope.

Remark 2.6. For $R = \mathbb{Z}$, $\mathbb{Q} \to 0$ is a $\bar{\mathcal{D}}$ -preenvelope.

ACKNOWLEDGEMENT. We wish to thank Professor Edgar E. Enochs for his very interesting comments and ideas.

References

- [1] D. Eisenbud, Commutative Algebra with a view toward algebraic geometry, Grad. Texts in Math. 1994.
- [2] E. Enochs, Injective and flat covers, envelopes, and resolvents, Israel J. Math. 39 (1981), 189–209.
- [3] E. Enochs, H. Kim, and Y. Song, Injective Covers over Commutative Noetherian Rings with Global Dimension at most two, Bull. Korean Math. Soc. 40 (2003), 167–176.
- [4] T. Wakamatsu, Stable equivalence of self-injective algebras and a generalization of tilting modules, J. Algebra 134 (1990), 298-325.

[5] J. Xu, Flat Covers of Modules, Lecture Notes in Math. vol. 1634, Springer-Verlag, Berlin, 1996.

Hae-Sik Kim
Department of Mathematics
Kyungpook National University
Daegu 702-701, Korea
E-mail: hkim@dreamwiz.com

Yeong-Moo Song Department of Mathematics Education Sunchon National University Sunchon 540-742, Korea E-mail: ymsong@sunchon.ac.kr