J. Korean Math. Soc. 42 (2005), No. 4, pp. 621-634

THE TOPOLOGY OF S2-FIBER BUNDLES
YoNG SEUNG CHO AND DOSANG JOE

ABSTRACT. Let P > M be an oriented S*-fiber bundle over a
closed manifold M and let @ be its associated SO(3)-bundle, then
we investigate the ring structure of the cohomology of the total
space P by constructing the coupling form 74 induced from an
SO(3) connection A. We show that the cohomology ring of total
space splits into those of the base space and the fiber space if and
only if the Pontrjagin class p1(Q) € H*(M;Z) vanishes. We apply
this result to the twistor spaces of 4-manifolds.

1. Introduction

(1.1) In this article, we are going to investigate the cohomology ring
structure of the total space of an S2-fiber bundle P over a closed manifold
M. Many of such examples can be constructed by the projectivization
of rank 2 complex vector bundle E over M, i.e., 7 : P(E)-»M. In
this case, the cohomology ring H*(P(E);R) is already known by the
Leray-Hirsch theorem as a free H*(M;R)-module generated by 1, ¢1(§)
with a relation such as ¢2(¢) — 7*(c1(E)) - c1(§) + m*(c2(E)) = 0 where
¢ is the tautological line bundle over P(E). This ring structure of the
total space can be recovered by constructing a closed 2-form 7 on P
which is called a coupling form. By the result of this paper, we can
identify the cohomology class of the coupling 2-form [r] = —¢1(§) +
Lei(n*(E)) for the case P = P(E). Then we have [r2] = 37*((c3(E) —
4co(E))) € m*(H*(M;R)) ¢ H4(P(E);R) which completely determines
the cohomology ring structure of the total space P(F) of the S2-fiber
bundle. In turn, we can conclude that ¢3(E) = 4co(E) if and only if the
cohomology ring H*(P(E)) splits. This kind of characterization of the
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cohomology ring structure of S2-fiber bundle P over M will be studied in
terms of coupling form 74 which is induced by a symplectic connection
A which comes from an SO(3) connection. Let us start with some basic
preliminaries about S2-fibration.

(1.2) Suppose P I, M is an S%-fiber bundle over M and the system of
local coefficients on M induced by the fiber is simple. Then there exists
an exact sequence, so called Gysin short exact sequence, such as

0—HF(M;R) =5 H*(P;R) 2 HF2(M;R)—0,

where 7, = PDomgoPD™ Y ny = H,_(P)— Hp,_k(M) is the cohomol-
ogy map induced by 7 and PD is the Poincare dual map [1]. Moreover
7y is called the map of integration along the fiber which it will be defined
in the Section 3 via a given SO(3)-connection on P. Let 7 € H2(P;R)
be an element such that m.(7) = 1 € H°(M;R). It leads the splitting
of the Gysin sequence by defining s(a) = 7 U n*(a) € H*(P;R) where
a € H*2(M;R). The splitting induced by the map s is followed by
the projection formula [1], i.e., m (7 Um*(a)) = 7s(7) U = . Then it
completely determine the linear structure of the cohomology of the total
space P as the tensor product of those of the base M and the fiber 52.
It says that

H*(P;R) = H*(M;R) ® H*(5%R),

where the isomorphism is induced by the splitting map s, as above.
With a given cohomology class 7, the ring structure of H*(P;R) is
determined by the square 72 ¢ H*(P;R). Suppose we have 72 =
(@)Ut +7*(B), by changing T to 7 — 7*(a), we may assume that the
square of the cohomology class 7 is the pull-back of some cohomology
class 3, i.e., 72 = *(3). We will show that the square of the 7 is equal
to the pull-back of p1(Q) € H*(M;R) where Q is the SO(3)-bundle
over M associated the P. In the next subsection, it will be discussed the
way of getting the principal SO(3)-bundle @ from the S2-fiber bundle
P.

2. Reduction of structure group

(2.1) For a given oriented S2-fiber bundle 7 : P—M, the bundle P
admits the structure of symplectic fibration since the Diff*(S?)/Symp
(S?,wg2) can be identified with the space of the symplectic forms on
52, which is the contractible space of positive volume form. Hence the
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structure group Diff*(S?) can be reduced to the group of symplectomor-
phisms, Symp(S?,wg2). This reduction always holds for the case when
the fiber F is a compact Riemann surface [8]. Moreover since the group
Diff*+(S?) defromation retract onto its linear part SO(3) we can asso-
ciate the principal SO(3)-bundle @ such that P = Q xgo(3) S?, where
SO(3) acts S? as the symplectomorphism of the standard symplectic
form wg2. Note that linear subgroup SO(3) is naturally isomorphic to
the isometry group of the Kahler metric on CP' = S2. Suppose the
dimension of the base space M is less than or equal to 4 then the prin-
cipal SO(3)-bundles @ over M are completely classified by the pair of
characteristic classes (w2(Q),p1(@)) such that p1(Q) = we(Q)?(mod2)
where wo(Q) € H%(M;Z/2) is the 2nd Stiefel-Whitney class and p; €
H*(M;Z) is the first Pontrjagin class. This classification result is due
to the theorem of Dold and Whitney(3]. The diffeomorphism class of
the principal SO(3)-bundles over M is unique up to homotopy class
of maps from M—BS0(3) where BSO(3) is the classifying space of
SO(3). We now discuss the extensions of the linear structure group
SO(3) to Spin(3) or Spin®(3) structure. Recall that Spin(3) = SU(2)
and Spin®(3) = Spin(3) xz, U(1) = U(2). The following results can be
found in [5]. :

(2.1.1) Spin(3) = SU(2) case. The obstruction for the extension
of the structure group from SO(3) to SU(2) is completely determined
by the second Stiefel-Whitney class ws(Q) € H?(M;Zs). It implies that
the vanishing of we(Q) € H?(M;Zs) gives an equivalent condition of the
extension to Spin(3). In this case p1(Q) = —4ca(E) € H*(M;Z) where
E is the complex SU(2)-bundle associated the extension.

(2.1.2) Spin®(3) = U(2) case. The obstruction is that there is a -
complex line bundle L whose first Chern class ¢y (L) € H?(M;Z) is the
integral lift of we(Q) € H2(M;Zs) i.e., c1(L) = we(Q) mod2. And we
have p;(Q) = c2(E)~4cz(E) € HY(M;Z) where E is the complex vector
bundle associated to the extension.

(2.2) Existence of section of # : P—M. Since the action of
SO(3) on S? is transitive, we can view S? as a homogeneous space
as SO(3)/80(2) = SO(3)/S'. Hence the existence of a section of
m: P 2 Q Xg0() S? = Q X 50(3) SO(3)/S'—M gives an existence
condition such that there is an S! reduction of the principal SO(3)-
bundle, i.e., Q = Qg1 X g SO(3). It also gives an equivalent condition

such that there exist a line bundle L whose first Chern class ¢;(L) is an
integral lift of we(Q) and c1(L)? = p1(Q).
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(2.2.1) Note that the condition for the existence of the section of an
S2-fiber bundle is exactly the same as that of existence of an almost
complex structure on oriented 4-manifold by the Wu’s theorem. This is
just because an almost complex structure on 4-manifold can be realized
as a section of the twistor space 7(X) which is an S2-fiber bundle over
M]5].

(2.2.2) Note that even though we know all the characteristic classes
11(Q), w2(Q) associated to the SO(3)-bundle @, it does not determine
all the homotopy clases of maps from M to BSO(3) for dimM > .5.
However, the cohomology ring structure of the associated §2-fiber bun-
dle P = Q xg0(3) 5?2 is completely determined by the characteristic
classes of SO(3)-bundle @, which will be discussed in the Section 3. Be-
fore getting into that, we need to discuss the Hamiltonian group action
of SO(3) on §? which induces an invariant positive definite pairing on
the Lie algebra of SO(3) in terms of the Hamiltonian functions.

3. Hamiltonian group action and semi-simple Lie algebra

(3.1) In this section, we discuss the Hamiltonian group action of a
semi-simple Lie group on a symplectic manifold and the local isome-
try between its Lie algebra and the Hamiltonian functions induced by
a moment map. Let us recall some basic facts from the Hamiltonian
group action. Let G be a compact Lie group with its Lie algebra G =
Lie(G) which acts covariantly on a symplectic manifold (X,w) b sym-
plectomorphisms. This implies that there is a group homomorphism G
— Symp(X,w) : g — 1. The infinitesimal action determines a Lie
algebra homomorphism G—x(X,w) : § + X¢ defined by

d
Xe=~1 Ve
=0
for every £ € G.

Since 14 is a symplectomorphism for every g € G it follows that each
X¢ is a symplectic vector field. This means that the 1-form ¢(X¢)w is
closed for every £. ‘Suppose the 1-form «(X¢)w is exact, dHe = «(X¢)w,
for every £ € G, we call the action of G on X weakly Hamiltonian.
Moreover the action is called Hamiltonian if the map

G— C®(X): & Hg

can be chosen to be a Lie algebra homomorphism with respect to be the
Lie algebra structure on G and Poisson structure on Coo(X). Note that
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in general, a weakly Hamiltonian action need not be Hamiltonian. The
obstruction takes the from of a Lie algebra cocycle in H?(G;R). For
details, see chapter 5 in [8]. However suppose (X,w) is a compact sym-
plectic manifold then there is a way of normalizing the Hamiltonian func-
tion so that [, Hw" = 0. Since [y Hgpw" = 0 and [y {He, Hy}w" =
[x dHe ANdHy Aw™ ! = 0, we have H,y = {H¢, Hy}. Hence with this
normalization, we can show that every weakly Hamiltonian action is
Hamiltonian. Assume that the action of G on X is Hamiltonian and G
is connected. Then it follows by straightforward calculation that

Hg'lég :Hgo’QZJg
forgeGand £ €G .

(3.2) Consider a bilinear symplectic paring on the Lie Algebra G with
a Hamiltonian action of G on a compact symplectic manifold (X,w) :

L& n>i= /H§ - Hy w™,

where w™ = w A - -+ Aw. By the equation(1) and Ygw = w, we have
< (Adg)t, (Adghn > = [ Hyrsey(e) - Hying(0) "

= [ Helwy(a) - Hylity(o) w3

=/ Hg-H,,w"
X

Thus we can prove the following proposition.

PRrROPOSITION 3.2.1. Let G be a connected Lie group. Suppose the
action of G on a compact symplectic manifold, (X,w) is Hamiltonian.
Then the paring

<<€,T]>>:/ Hg-Hnw"
X

defines an adjoint invariant semi-positive definite form on the Lie algebra

g.

Note that we have chosen the canonical orientation induced by the
form w™ € 9?*(X). To make a the form < -, - >> being positive definite,
it only needs to have H; # 0 for all 0 # £ € G. It leads to the following
definition.
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DEFINITION 3.2.2. The symplectic group action of G on (X,w) is
effective if the induced Lie algebra homomorphism G — x(X,w) is in-
jective.

The definition of effectiveness is equivalent to that it has only discrete
stabilizers in G. For instance, consider the Hamiltonian action of G =
U(n) on (CP" !, 19) induced by the obvious action on C™ where 7y the
standard symplectic form on CP"~!. Then this action is not effective
since the diagonal matrices (e®FE) act trivially on CP"~! where E is
the identity matrix. However if the action is restricted to the subgroup
SU(n) C U(n) then it becomes effective. In that case, one can compare
the positive definite form < -,- > defined above and canonical inner
product < &, >= trace(£*n), where £* denotes the conjugate transpose
of £. By the uniqueness of the invariant definite form on the semi-
simple Lie algebra su(n), one can compute the constant ¢ such that
< .- >= ¢ K -,->. For the sake of this exposition, we are going to
compute this constant for the effective Hamiltonian action of SU(2) on
CpP'~ g2
(3.3) The effective Hamiltonian action of SU(2) on (CP! =
S2, wg2). Let us define the symplectic form wg2 on S? as follows. Let
pr: C?2 — 0 — CP! denote the obvious projection and define prrwg: =
%00 log ||z||? where ||z||? = 202 + z121. Then it is easily checked that
wg2 is a well defined, U(2) invariant symplectic 2-form and |, gzwgz = 1.
Now let {w1 = 21/z0} be the coordinates on the open set Uy = {(20 # 0)}
in CP! and use the lifting z = (1,w;) on Uy ; we have

w __L' dwi A dop
T a1+ w22

Let w1 = w be the complex coordinate on Uy = (29 # 0) and let

—-i 0
5—( 0 Z.)63'11(2).
Then in the polar coordinate system, X = 4|, _ e*"-w(=re?®) = 2(%).
where % is the angular tangent vector such that df (d%) = 1 so we have
w = Eiaypdrdd and Xelw = ~Lpaypdr = d(—yizy). Thus we
have H = %(ﬁg - =-3 L—L—:z, here we take the normalization such
that fg He wge =0. Then by the direct integration we have
1

H w=——:.
@ YT 1252
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Also < €,& >= tracef*¢ = —tracef? = 2. Then we have < £, >=
2412 <« €, € > By the invariance of the adjoint action of the both inner
product, the constant is universal i.e., < &, >= 247% < &, > gu(2) for
all £,n € su(2). In particular, we have Tr(¢2) = —2472 < £, £ > where
Tr is the trace map.

(3.4) Local Hamiltonian action of SO(3) on CPL. As we already
know, there is a local isometry between su(2) and so(3) which is induced
from the double cover SU(2) — SO(3). Note that SU(2) is naturally
identified with Spin(3) = S3. By using this local isometry, any £ € so(3)
can be viewed as an element ¢ € su(2). Let & € so(3) = su(2) be
a element of the Lie algebra of SO(3). Let expt{ € SO(3) be a local
curve in SO(3). Then expt% becomes its local lifting to SU(2). Since
the group action of SU(2) and SO(3) on S? coincide for the lifting of
g € SO@3) to g € SU(2), the symplectic vector field X; induced by
SO(3) action is the same as that of 3 X by the SU(2) action. Also the
Hamiltonian function He from the SO(3) action is the half of that from
SU(2). It follows that

1
<&m >s0(3) = 1 <&,m > su(2)
- £
2472 2’2

o1
by K& >50(3) -

Hence it can be summarized as the following lemma.

< >>su(2)

LEMMA 3.4.1. Under the assumption of the Hamiltonian action of
SO(3) on S?, we have

) =20 [

where H¢ is the normalized Hamiltonian function associated to £,71 €
su(2).

4. The ring structure of H*(P;R)

(4.1) SO(3) connection and coupling 2-form. As we discussed
in Section 1, for every S? fiber bundle P over M there is an SO(3)
principal bundle @ over M such that P = Q X go3) 52 by the reduction
of structure group to the linear subgroup SO(3) of Symp(S52,w). Note
that we take the symplectic form w to the canonical one defined as
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above. Then each fiber F,, of the symplectic fibration 7 : P — M
carries a natural symplectic structure wy, € Q2(F,,) defined by

Wm = ¢a(m)*w

for some local trivialization ¢o : T (Uy) =~ Uy x S% and ¢o(m) =
balF, + Fm = S2. Note that this form is independent of the choice
of a. We call 2-form 7 € Q?(P) is compatible with the symplectic
fibration m : P — M if the restriction of 7 to each fiber F,, is eaual to
wm defined as above. Note that the symplectic fibration P is induced
from the principal SO(3)-bundle @, i.e., P = Q X 50(3) S? and SO(3) —
Symp(S?,wg2) is a Hamiltonian action. We can apply the following
theorem due to Weinstein [9].

THEOREM 4.1.1. Let G — Sypm(F,w) : g — %4 be a Hamiltonian
action. Then every connection A on a principal G -bundle QQ — M gives
rise to a closed 2-form T4 on the associated fibration Q x ¢ F — M which
restricts to the forms w,, on the fibers.

Such a 74 is called the coupling 2-form of the symplectic connec-
tion induced by the connection A. The above theorem is generalized
by Guillemin-Lerman-Sternberg by constructing the coupling 2-form in-
duced by the symplectic connection with a compact simply-connected
fiber. This construction is extensively discussed in the book [4, 8]. Let
us briefly explain how the construction goes. At each point z € P de-
note by Vert, = kerdm(z) = T, Fy(;) the vertical tangent space to the
fiber. Let us define I" to be the connection on the fibration 7 : P — M
, which defines a field of horizontal subspace Hor, C T, P such that
TP, = Vert, ® Hor,. This leads to a splitting of the tangent bundle of
P, ie., TP = Vert @ Hor. Then every path 7 : [0,1] — M determines
a diffeomorphism V., : F,g) — Fy1). The diffeomorphism V., is called
the holonomy of the path 4. The connection I' is called symplectic if
the associated diffeomorphism W¥., preserves the symplectic structure in
the fiber, i.e.,Wiw ) = wy() for every path . Let o € Hory be a
horizontal vector then 7o = 0 for all vertical vector w € Vert,. It now
remains to define 7 (v1,72). It is defined as follows, let v;,v2 be two
vector fields on M then the vertical part of the communicator [07, V3] of
the horizontal lifts 71, U2 respectively is a symplectic vector field on each
fiber Fy(,) and so, by the assumption of Hamiltonian action, is gener-
ated by a unique Hamiltonian function H(v, ¥9)of mean value zero, i.e.,
fF H vy, ¥9)w = 0. We therefore define

7']_"(’01, 1‘)2) = H[ﬁl’ﬁﬂvert (1})
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The proof that m is a well-defined closed 2-form reduces to some basic
facts about connection, gauge transformation, and curvature on sym-
plectic fibration [8].

Let A be a connection on 7 : § — M then it induces a connection
Faonm: P =Q Xs00) 82 — M. This connection becomes a sym-
plectic connection because the holonomy is induced from the SO(3) C
Symp(S?,wg2). Let 74 be the 2-form on P = Q X 50(3) S? associated
with an SO(3)-connection A on Q. In our case, we have

TA('ﬁl(III),’l‘}Q(.’II)) = HA[fu,flz](x)a
where £(m) = [g, A[D1,72)(q)] € T'(M,adQ) and H¢ the normalized
Hamiltonian function on each fiber F,,, = Sfr( ) Here we denote £(m) =

[9,&,] = [g-9, 97 ¢g] € adQ and note that Ry ((A[t1, 92])(q) = Aldrg, Ta2g]
(q-9) = g A[o1, 52](q)g-

It can be explained as follows. Let z = [q,y] = [¢- 9,97} -y] € P =
Q Xs50(3) 52 where we denote that g7 -y = 9,-1(y) € S? is the group
action of g € SO(3) at y € S2%. Let ¢ € T'(M,adQ) be a section of the
adjoint vector bundle, ad@, associated by . Then it defines a vector
field X¢ on P which is vertical along the fiber as follows,

d
Xeo=lqg &yl = |— —
be l2:4.9 [dt t=0 ot t=0
It follows from the equivariance of ¢, ie., {54 = g_lgqg, this vector
field is well defined and independent of the representative z = [q,y] =
[q- 9,971 - y]. By definition, it defines a symplectic vector field ¢ which
induces the unique Hamiltonian funtions H¢ on each fiber F,,, = S? of
mean value zero. For any pair of vector fields v1,v9 on M, the vertical
part of the commutator of the horizontal lifts [U1, U] is exactly defined by
Eoy g = A[U1,02] € T(M,adQ). Hence it defines the Hamiltonian func-
tion H 4, 3,)(z) : P — R. Moreover note that A([v1,vs]) = Fa(v1,72)
where Fa € Q?(M,adQ) is the curvature tensor induced by A.
(4.2) The ring structure of H*(P;R) and the Pontrjagin class
of Q. From Section 1.2, we have the Gysin sequence of an S%-fiber
bundle P over M as follows,

0 — H¥(M;R) = H*(P;R) = HF2(M;R) — 0,

where 7, is the integration along the fiber.
We want to define this map ., : Q¥(P,R) — QF2(M,R) as follows

me(a)(v1,v2, - -+, Vg—2)(m) =/ a(vy, -, Up—2)(x),

q - exp tf,y] = [

exp tf-y}
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where 7; is the horizontal lift of v; with respect to the connection A.
Note that this map does not make any difference if v; has been chosen
to be any lifting of v;.

Then we have m.(74) = 1 and by the projection formula we have
7 (m*(8)AT4) = B for all B € Q*(M, R) and the commutativity of m, and
d follows from the direct local computation, i.e., we have T.da = dm.a
[1]. We need to verify the following identities to show the main result
Theorem 4.2.2 below of this paper.

LEMMA 4.2.1. [73] = n*p1(Q) where p1(Q) is the Pontrjagin class
of Q.

Proof. We are going to establish the following identities to prove
Lemma 4.2.1.

(1) 7% = 7°(8) + da.
From the Gysin sequence, we have
2 =TAANTA =7B) + 7" () ATa + dy
and we have m,(73) = a + d(m(y)). By the normalization condition,
ﬂ*(T%)(ﬁl,%) =2 fF 74(v1,v2)T4 = 0, it implies that o is an exact form
on M. This also shows that 72 = 7*(8)+da where a = 7* (7. (7)) ATA+".
(2) 7T*(TEX)(UL e ,'U4) = 3fF 7-/21('0 1, ’U4)TA'
For sake of brevity, we denote
TA(E',@') = Hy;, 14(vs,-) = 7,
T4 (1 U4) = 2(H12H34 — Hi3H24 + H14Hogs),
f«( 5) = 2(Hija = 1 A T5),

) —150) ol
+ Z (=) @) (@)e(W) 75 A (@) Ta

i> >kl
+ > Sign(0)u(Tg(2)) (T (1)) T4 (Vo (a))(To(3))TA
o(1)<o(2),0(3)<o(4)

= 74(01, - ,0a)74 + 4(Hi2H3q — Hi3Hos + H14Ho23)Ta
+Zaijn/\7'j
= 37‘%(51, oo ,’174)7',4 + Zai]ﬂ- ATj.

Since each term 7; A 7; in the last sum vanishes by the integration
along the fiber, it completes the equation.

(3) 18] = 1m1(Q)-
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From above, we have

3 =75 ATA =7 (B) ATa +d(a ATa),
ﬂ(vla T 7”4) = 71'*(7_31) - d(7‘f'>.<(Cl/\’/"A))7
m (v = [ A T

F
= / 2(H12H34 — Hi3Haq + H14Ha3)7a
F
= 3/52 2(I'-’FmI{FM — Hp,Hp,, + I_IFMI{F%)WS2

1
= — (< Fiz, F34 > — < Fi3, Fog > + < Fig, I3 >)

472
1
— _RT‘I‘(F12F34 — F13F24 + F14F23)
1
= —QFPI'((F%)("H) T ,U4)),

where F;j = Fa(v1,v2) € 50(3) 2 su(2), and Hp,; is the normalized
Hamiltonian function induced by Fj; € so(3). Hence we have [7*(8)] =
(73] = 37 m(Q). 0

THEOREM 4.2.2. Let P be the S*-fiber bundle over M then there is a
closed two form 7 € Q?(P,R) such that its cohomology class defines the
linear isomorphism H*(P;R) = H*(M) ® H*(S?) and it also determine
the ring structure H*(P;R) such that [r]> = 3m*py € m*(H*(M;R)) C
H4(P;R)), where p1 = p1(Q) is the first Pontrjagin class of the associ-
ated principal SO(3)-bundle Q.

COROLLARY 4.2.3. H*(P;R) = H*(M;R) ® H*(S? R) splits as a
ring iff the Pontrjagin class of the associated SO(3)-bundle Q vanishes
ie, pi(Q) =0 € HY(M;R). For the case P = P(E) is a projectiviza-
tion of rank 2 vector bundle, p1(Q) = p1(adE) = c1(E)? — 4c2(E) €
H4(M;R). ‘

Proof. Suppose the ring H*(P;R) splits as a ring H*(M;R)® H*(S5?;
R) then there is an element 7 € H?(P;R) such that m.(r) = 1 and
[72] = 0. Comparing the coupling 2-form 74 with 7, we know that
[ra] — [1] = [7*a] by the Gysin sequence. Therefore we have [14]2 =
[7]?2 4 2[7][x*a] + [7*a]?® and 0 = 7.[r3] = 2{a] € H?(M;R), i.e., ;m(Q) =
4[r%] =0 € H4(M;R) C H*(P;R). This completes the proof. O
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Note that the splitting condition of P(FE), the projectivization of rank
2 vector bundle E, is achieved if F is projectively flat which implies that
End(F) is flat.

LEMMA 4.2.3. We can prove that the cohomology class of the cou-
pling two-form [r4] does not depend on any symplectic connection I' on
P by the same argument given in the proof of the Corollary 4.2.2, i.e.,
[74] = [1r] € H?(P;R). See [4].

In the S2-fiber bundle case, the cohomology class of the coupling form
is characterized uniquely as an element 7 € H2(P;R) such that 7,7 =1
and 7% € m*(H*(M;R)).

5. Twistor space of 4-manifold

(5.1) In this section, we are going to study the twistor space 7(M) of
oriented 4-manifold M which is an S2-fiber bundle over M. The twistor
space 7(M) is naturally induced by the projectivization of positive pure
spinors on M which is isomorphic to the space of orthogonal almost
complex strucrures on M. Suppose the dimension of M is 4, nonzero
positive spinor defines a pure spinor in turn, the twistor space 7(M) is
canonically isomorphic to the projectivization of positive spinor bundle,
ie., 7(M) = P(SZ%) where S% is the positive spinor bundle which is
rank 2 complex vector bundle. Thus the twistor-space 7(M) is an S*-
fiber bundle over M canonically associated to the Riemannian manifold
M. Topological characterization of the existence of the positive spinor
bundle is whether there exists an integral lifts of the second Stiefel-
Whitney class of M, wa(M) which indicates the Spin® structure of given
manifold M. It is well known that there exists as Spin®-structure on
any oriented smooth 4-manifold. For more discussion on the twistor
space and Spin® structures, see [5]. Note that the twistor space is well-
defined independent of Spin® structure, SEC . As we discussed before,
there is an associated principal SO(3)-bundle Q,(ps) which isomorphic
to the adjoint bundle of the unitary bundle S'é? . We will show that
p1(Q) = 30(M) + 2x(M) where x(M) is the Euler characteristic of M
and o(M) is the signature of M.

LEMMA 5.1.1. Let ST be a positive spinor bundle of almost complex
4-manifold M then we have

a(8) = 3(ex(S7) = 30— 2)
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where o is the signature of M and x is the Euler characteristic of M.

Before we prove the lemma, it might be good place to recall the basic
facts about the spinor bundle over 4-manifold. This material can be
found in [5] and [6]. Let wo(M) € H%(M;Z/2) be the second Stiefel-
Whitney class and then the Spin® structures are naturally isomorphic to
the cohomology class of the integral lift of we (M) which is naturally iso-
morphic to the set of characteristic line bundles {L | complex line bundle
c1(L) = wa(M)}. Tt is a principal H*(M;Z) space since the difference
between two characteristic line bundles contained in 2H?(M;Z). We will
abuse the notation for complex line bundle L as | = ¢1(L) € H*(M;Z),
vice versa. This sums up to as follows:

{Spin® structures over M} = {Lo + 21 | | € H*(M;Z)}

where Ly is a characteristic line bundle. Suppose ST be the positive
spinor bundle then the determinantal line bundle detS* = L defines the
Spin® structure. We denote ST = S*(L) for L = detS™. For any other
spinor bundle, it can be written as tensor product of some line bundle
[, ie, ST(L) = S§ ® | where | = (L ® Lo)2. It induces c2(S*(L)) =
() +ar(S7)-cr (D) + e and e1 (S (L)) = GH(S{) +aer(ST) e (1) +
4c2(1) which proves the lemma. It suffices to show that there exists a
positive spinor bundle Sy such that ca(Sg) = }l(c%(Sg' )) — 36 — 2x).

Proof of Lemma 5.1.1. Suppose M has an almost complex structure
then the J : TM — TM defines a canonical Spin® structure and the
induced positive spinor bundle is isomorphic to S}' 2 JIRK J‘l with
K}l = detT' My for TM; being the complex tangent bundle induced
by J and II being trivial line bundle ([6]). We have c2(ST) = 0 and
(K 51) = 2x + 30 by the Hirzebruch signature theorem.

Note that the canonical negative spinor bundle 57 induced by an
almost complex structure J is canonically isomorphic ro complex tangent
bundle TMj. Since c3(S) = co(M) = x(M) and c2(S7) = }(M) =
2x(M) + 3a(M), we have c3(Sz) = $(c2(Sg) — 30(M) — 2x(M)). Let
Q S5 be the principal SO(3)-bundle associated to the the negative spinor

bundle S;. Then we have p; (QSE) =30 (M) — 2x(M). O

COROLLARY 5.1.2. The rational cohomology ring of P(S%), the
projectivization of the positive (resp. negative) spinor bundle, splits if
and only if 30(M) = F2x(M) respectively.

Example 5.1.3. We know that the complex projective space CP3
becomes the twistor space over S*. Identity C? with quaternionic plane
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H? then the obvious fibration 7CP? — HP! induces the S2-fiber bundle
structure. Canonically we can identify HP' = §* and CP? = 7(5%).
For details, see [5], [8]. In this case, the cohomology class of the form
induces by the Fubini-Study metric, w € H?(CP3;R) defines the same
class of the coupling 2-form since |, g2 w = deg,, 52 = 1 where 52 is the
fiber class.

Note that the above example explains that the square of the cohomol-
ogy class of coupling form is the generator of H*(CP3;Z) which equals
to m*(positive generator)= 1m*p1(Q) = 2(30(S%) + 2x(S%) = 1€ Z =
H4(M; Z). ‘
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