DOI QR코드

DOI QR Code

Determination of Convection Heat Transfer Coefficient Considering Curing Condition, Ambient Temperature and Boiling Effect

양생조건·외기온도·비등효과를 고려한 콘크리트 외기대류계수의 결정

  • Choi Myoung-Sung (Daewoo Institute of Construction and Technology) ;
  • Kim Yun-Yong (Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Woo Sang-Kyun (Korea Electric Power Research Institute) ;
  • Kim Jin-Keun (Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
  • Published : 2005.08.01

Abstract

The setting and hardening of concrete is accompanied with nonlinear temperature distribution caused by development of hydration heat of cement. Especially at early ages, this nonlinear distribution has a large influence on the crack evolution. As a result, in order to predict the exact temperature history in concrete structures it is required to examine thermal properties of concrete. In this study, the convection heat transfer coefficient which presents thermal transfer between surface of concrete and air, was experimentally investigated with variables such as velocity of wind, curing condition and ambient temperature. At initial stage, the convection heat transfer coefficient is overestimated by the evaporation quantity. So it is essential to modify the thermal equilibrium considered with the boiling effect. From experimental results, the convection heat transfer coefficient was calculated using equations of thermal equilibrium. Finally, the prediction model for equivalent convection heat transfer coefficient including effects of velocity of wind, curing condition, ambient temperature and boiling effects was theoretically proposed. The convection heat transfer coefficient in the proposed model increases with velocity of wind, and its dependance on wind velocity is varied with curing condition. This tendency is due to a combined heat transfer system of conduction through form and convection to air. From comparison with experimental results, the convection heat transfer coefficient by this model was well agreed with those by experimental results.

이 연구에서는 외기와의 열전달을 나타내는 외기대류계수에 관한 실험을 실시하였다. 외기대류계수에 관한 기존의 모델에서 나타났던 문제점을 해결하기 위해 실험 변수로 풍속외에 양생 조건의 종류(양생포, 양생포+비닐), 외기온도, 비등효과를 선정하였다. 실험 결과를 이용하여 외기대류계수를 산정하고자 열평형 방정식을 이용한 수치해법을 사용하였으며, 이론적인 고찰을 통해 각 양생 조건별로 풍속에 따른 외기대류계수의 변화를 예측할 수 있는 모델식을 제안하였다. 열평형 방정식을 이용한 수치해법에서 초기에 외기대류계수가 과잉평가되는 문제점을 해결하기 위해 비등효과에 의한 증발량을 고려하여 수정 열평형 방정식을 제안하였다. 양생 조건을 고려한 제안된 모델식에 의하면, 모든 경우에 풍속에 따라 외기대류계수가 증가하는 경향을 보였으나 양생 재료의 사용여부나 양생 조건에 따라 다른 양상을 보이는 것을 알 수 있었다. 이러한 양상의 차이는 양생 재료의 열 특성에 의해 결정되는 것으로 외기대류계수는 양생 재료가 없는 경우, 양생포를 사용한 경우, 양생포+비닐을 사용한 경우의 순으로 풍속의 영향을 받는 것으로 나타났다. 제안된 모델식을 이용하면 수화열에 의한 콘크리트 구조물의 온도해석시 보다 정확한 결과를 얻을 수 있을 것으로 사료되며, 향후 이러한 열특성계수에 대한 연구가 필요할 것으로 판단된다.

Keywords

References

  1. Rastrup, E, 'Heat of Hydration in Concrete', Magazine of Concrete Research, Vol.6, No.17, 1954, pp.79-92 https://doi.org/10.1680/macr.1954.6.17.79
  2. Hsieh, C, Qin, C, and Ryder, E, Development of Computer Modelling for Prediction of Temperature Distribution Inside Concrete Pavements, Report FL/DOT/SO/90-374, Mechanical Engineering Dept, University of Florida, Gainesville, 1989, pp.32-59
  3. Chapman, Fundamental of Heat Transfer, Macmillian Inc., New York, 1982, pp.6-79
  4. Fermando, A B., Mendes, P. A, and Mrambell, E, 'Heat of Hydration Effects in Concrete Structures', ACI Materials Journal, Vol.89, No.3, 1992, pp.139-148
  5. Mendes, P. A, Temperature Gradients for Concrete Bridges, MSc thesis, Technical University of Lisbon, 1989, pp.78-114
  6. 四國電力(株), マスコンクリ-トの初期ひび割れとその防止對策に關する硏究, 1964, pp.36-70
  7. 山川, 笠原, 小林, 'マスコンクリ-トの熱傳導率試驗方法の檢討' 弟37回土木學會年次學術講演會槪要集, 弟5部, Vol.37, No.5, 1982, pp.27-64
  8. 小澤章三, マスコンクリ-トの初期ひび割れとその防止對策に關する硏究(I), 發電水力, No.57, 1962, pp.254-261
  9. 김국한, 전상은, 방기성, 김진근, '콘크리트의 열전도율에 관한 실험적 연구', 콘크리트학회논문집, Vol.13, No.4, 2001, pp.305-313
  10. 이택식, 이재현, 이준식, 열전달, 희중당, 1992, pp.14-61
  11. Eckert. E R G., and R M. Drake, Analysis of Heat and Mass Transfer, Mcgraw-Hill, New York, 1972, pp.10-39
  12. Kang, Y. M. and Park, G. C., 'An experimental Study on Evaporative Heat Transfer Coefficient and Applications for Passive Cooling of AP600 Steel Containment', Nuclear Engineering and Design, 204, 2001, pp.347-359 https://doi.org/10.1016/S0029-5493(00)00365-4
  13. Billard, Y, Shekarchi, M, Debicki, G., Granger, L, and Chauvel, D., 'Heat and Mass Transfer in a Concrete Wall with Composite Linear under Accidental Conditions', Nuclear Engineering and Design, 228, 2004, pp.261-272 https://doi.org/10.1016/j.nucengdes.2003.06.027
  14. Kapila, D., Falkowsky, J., and Plawsky, J., 'Theraml Effects During the Curing of Concrete Pavement', AG Material Journal, Vol.94, No.2, 1997, pp.119-128
  15. Hsieh, C. and Qin, C., 'Characterization of Thermal Properties of Concrete and Temperature Prediction Model', Journal of Korea Concrete Institute, Vol.9, No.2, 1997, pp.121-132
  16. Thomas, L. C., Heat Transfer, Prentice-Hall International, New Jersey, 1992, pp.463-502
  17. Kapila, D., Falkowsky, J., and Plawsky, J., 'Theraml Effects During the Curing of Concrete Pavement', ACI Material Journal, Vol.94, No.2, 1997, pp.119-128
  18. Machida, N. and Uehara, K, 'Nonlinear Thermal Stress Analysis of A Massive Concrete Structure', Computer & Structures, Vol.26, No.26, 1987, pp.287-296 https://doi.org/10.1016/0045-7949(87)90259-8
  19. Kim, J. K. and Yang, E. I., 'Factors for Hydration Heat and Thermal Stress in Mass Concrete', Journal of Korea Concrete Institute, Vol.9, No.3, 1997, pp.15-23