Water Content Reflectometer(WCR)을 이용한 매립지반 최종 복토층의 체적 함수비 측정에 관한 연구

A Study on the Measurement of Volumetric Water Content Using WCR in Final Cover Layer of Landfill

  • 김경철 (위스콘신주립대학교-메디슨 토목환경공학과) ;
  • 황규호 (위스콘신주립대학교-메디슨 토목환경공학과) ;
  • 이송 (서울시립대학교 도시과학대학 토목환경공학과)
  • Kim Kyung-Chul (Dept. of Cibil and Environmental Engrg., Univ., of Weisconsin-Madison) ;
  • Hwang Koou-Ho (Dept. of Cibil and Environmental Engrg., Univ., of Weisconsin-Madison) ;
  • Lee Song (Univ. of Seoul, Dept. of Civil Engrg.)
  • 발행 : 2005.08.01

초록

본 연구는 매립지 최종 복토층의 체적함수비 측정을 위한 저주파수 WCR(Water Content Reflectometer)의 Calibration 에 관한 것이고, Calibration의 검증은 흙의 전기전도도와 물성치를 이용하여 평가하였다. WCR 주기에 대한 체적함수비의 선형 Calibration은 높은 상관성을 보였다. 흙의 전기전도도가 증가할수록 Calibration의 기울기가 감소하는 것으로 나타났다. Calibration의 기울기는 점토의 함유량, 유기질의 함유량, 액성한계, 소성한계가 높은 흙, 즉, 전기전도도가 전형적으로 높은 흙에서 낮은 값을 보였다. 낮은 주파수영역을 갖는 WCR을 활용하여 좋은 계측결과를 얻을 수 있다는 것이 본 연구를 통해 보여지고 있다.

This study deals with the calibration of low-frequency water content reflectometer for measuring the volumetric water content of soils in landfill final cover layer, and the validity of calibrations was evaluated by electrical conductivity and index properties of the soils. Linear calibrations concerning volumetric water content to WCR period provided good agreement with the data. Analysis of the calibration data indicates that the slope of the calibration decreases as the electrical conductivity of the soil increases. Lower slopes correspond to soils with greater clay content, organic content, liquid limit, and plasticity index, which typically have higher electrical conductivity. It could be well explained that WCR can operate in a lower frequency range.

키워드

참고문헌

  1. Abu-Hassanein, Z., Benson, C., and Blatz, L. (1996), 'Electrical Resistivity of Compacted Clays', Journal of Geotechnical Engineering, Vol.122, No.3, pp.397-407 https://doi.org/10.1061/(ASCE)0733-9410(1996)122:5(397)
  2. Ang, A. and Tang, W. (1975), 'Probability Concepts in Engineering Planning and Design', John Wiley and Sons, USA, pp.286-319
  3. Bilskie, J. (1997), 'Using Dielectric Properties to Measure Soil Water Content', Sensors, Vol.14, No.7, pp.26-32
  4. Campbell, G. and Anderson, R. (1998), 'Evaluation of Simple Transmission Line Oscillators for Soil Moisture Measurement', Comput. Electron. Agric., Vol.20, No.1, pp.31-44 https://doi.org/10.1016/S0168-1699(98)00006-4
  5. CSI (1996), CS615 Water Content Reflectometer: Service Manual, Campbell Scientific, Inc., Logan, UT
  6. Dasberg, S. and Hopmans, J. (1992), 'Time Domain Reflectometry Calibration for Uniformly and Non uniformly Wetted Sandy and Clayey Loam Soils', Soil Science Society of America Journal, Vol.56, No.5, pp.1341-1345
  7. Fellner-Feldegg, H. (1969), 'The Measurement of Dielectrics in The Time Domain', The Journal of Physical Chemistry, Vol.73, No.3, pp.616-623 https://doi.org/10.1021/j100723a023
  8. Giese, K. and Tiemann, R. (1975), 'Determination of the Complex Permittivity from Thin-sample Time Domain Reflectometry Improved Analysis of the Step Response Waveform', Advances Molecular Relaxation Process, Vol.7, No.1, pp.45-59 https://doi.org/10.1016/0001-8716(75)80013-7
  9. Jones, S., Wraith, J., and Or, D. (2002), 'Time Domain Reflectometry Measurement Principles and Applications', Hydrological Process, Vol.16, No.1, pp.141-153 https://doi.org/10.1002/hyp.513
  10. Ledieu, J., De Ridder, P., and Dautrebande, A. (1986), 'A Method for Measuring Soil Moisture by Time-Domain Reflectometry', Journal of Hydrology, Vol.88, No.3-4, pp.319-328 https://doi.org/10.1016/0022-1694(86)90097-1
  11. Look, B. and Reeves, I. (1992), 'The Application of Time Domain Reflectometry in Geotechnical Instrumentation', Geotechnical Testing Journal, Vol.15, No.3, pp.277-283 https://doi.org/10.1520/GTJ10024J
  12. Nadler, A., Dasberg, S., and Lapid, I. (1991), 'Time Domain Reflectometry Measurements of Water Content and Electrical Conductivity of Layered Soil Columns', Soil Science Society of America Journal, Vol.55, No.4, pp.938-943 https://doi.org/10.2136/sssaj1991.03615995005500040007x
  13. Paul, C., Whites, K., and Nasar, S. (1998), 'Introduction to Electromagnetic Fields', McGraw-Hill, USA, pp.126-136
  14. RVO (1997), RCRA-Equivalent Cover Demonstration Project Comparative Analysis and Field Demonstration Design Scope of Work, Rocky Mountain Arsenal Remediation Venture Office, Adams County, Colorado
  15. Roth, C. H., Malicki, M. A., and Plagge, R. (1992), 'Empirical Evaluation of the Relationship Between Soil Dielectric Constant and Volumetric Water Content as a Basis for Calibrating Soil Moisture Content', Journal of Soil Science, Vol.43, No.1, pp.1-13 https://doi.org/10.1111/j.1365-2389.1992.tb00115.x
  16. Suwansawat, S. and Benson, C. (1999), 'Cell Size for Water Content-Dielectric Constant Calibration for Time Domain Reflectometry', Geotechnical Testing Journal, Vol.22, No.1, pp.3-12 https://doi.org/10.1520/GTJ11311J
  17. Topp, G. C., Yanuka, M., Zebchuk, W. D., and Zegelin, S. J. (1988), 'The Determination of Electrical Conductivity Using TDR: Soil and Water Experiments in Coaxial Lines', Water Resources Research, Vol.24, No.7, pp.945-952 https://doi.org/10.1029/WR024i007p00945
  18. Whalley, W. R. (1993), 'Considerations on the Use of Time-Domain Reflectometry (TDR) for Measuring Soil Water Content', Journal of Soil Science, Vol.44, No.1, pp.1-9 https://doi.org/10.1111/j.1365-2389.1993.tb00429.x
  19. Zegelin, S., White, I., and Jenkins, D. (1989), 'Improved Field Probes for Soil Water Content and Electrical Conductivity Measurement Using Time Domain Reflectometry', Water Resources Research, Vol.25, No.11, pp.2367-2376 https://doi.org/10.1029/WR025i011p02367