1. Introduction

AR 71WE M| 2E 9% dlojet Mg =H

A2 A An2E A% dolg A wd
(A Data Dissemination Model for Location-based Services)

.
H} 1 A =2
=l g | 5 &

=

HH T+

s =M
(=2 =] —

(Kwangjin Park) (Moonbae Song) (Chong-sun Hwang)

£ o dA ANYe T4 FAdA ZoholES] AEAQ AHE NI Y3l AEETE F,
Aue Bao/2E AP 3 doleidt AY2E A AgFgozy FetoldEe] AYAA HHE
29T 4 Aok 2} Er1HQ AdA FRE BESJRAE F71E F7HA7)E G- vk AR
AMulzd el Age] W ¢HAde FRY dxe AZolge BEAME ML £ Aok B =744
Sgle B HEEIAE @A k-AFH A MulaE AYsly] 93 BBS(Broadcast Based LDIS
Scheme) 71¥-< AHETE BBS 7oA Aie Agstnx she HolEtE HX o] 78k Fof FHs)
o o] AuA FES I Zoo|JESAA AL w§ Felo|dE H Hy FHALGE TFA
917) $1ste) Zalsla) 7 OBC(Object Boundary Circle)7]H-& Aj2o] Aggich Agt =8 digk 4%
7}e dHeojetel B% ZelolddEe olF & TE|m Mulx g9 m7) § kg @A oo Frh

F19 = 0 YA s, ol AFH, A, T '

Abstract Indexing techniques are used to implement selective tuning in wireless environments.
Indices are broadcast together with data to help mobile clients locate the required information. As a
result, clients stay in doze mode most of the time. The drawback of this solution is that broadcast
cycles are lengthened due to additional index information. In location-aware mobile services(LAMSs),
it is important to reduce the query response time, since a late query response may contain out-of-date
information. In this paper, we present a broadcast-based spatial query processing method (BBS)
designed to support k-NN query processing. In the BBS, broadcasted data objects are sorted
sequentially based on their locations, and the server broadcasts the location dependent data along with
an index segment. The performance of this scheme is investigated in relation to various environmental
variables, such as the distributions of the data objects, the average speed of the clients and the size
of the service area.

Key words : Location Dependent Information Service, Mobile Computing, Caching, Prefetching

have the ability to issue spatial

queries.

405

The

Recently, the efficient storage and retrieval of
moving objects in Database Management Systems
has attracted considerable attention. In Location—
Aware Mobile Services(LAMSs), the
characterized by the large number of mobile clients

server is

and stationary objects that they have to manage. In

this environment, both mobile and stationary clients

T gy3e - melddn AFEAYIedTE AdTE
kjpark@disys.korea.ac.kr
H oA 34 nddn FFERENEdTL: A7

mbsong@disys.korea.ac.kr
o ZAe - meldizha HFE S as
hwang@disys.korea.ac.kr
2004 119 109
20058 3¢9 21

=T
AR

broadcasting of spatial data is an effective way of
disseminating data in a wireless mobile environ-
ment, since this method can be scaled up without
any penalty being incurred, when the number of
users grows. However, performance of the query
processing obtained with a broadcasting method is
highly dependent on the order in which the data is
broadcasted. Therefore,
organize the sequence of the broadcast data is a

the question of how to

very important issue [1]. In the broadcast-based
model, the broadcasting of data together with an
index structure is an effective way of disseminating
data in a wireless mobile environment [1,2]. Using

an index can help the client to reduce the amount

406 AR B3 =E A doleulojx A 32 A A 4 T(A068)

of time spent listening to the broadcast channel. In
this paper, we aim to provide research directions
towards reducing both the Tuning Time and
Access Latency for LAMSs. Let's consider - an
example in which a user driving in his or her car
and sends a query, such as, "As I am moving in a
certain direction, show me all gas stations within
10km of my location.” According to the user's
location and the size of the query range, the result
will be dynamically changed. To handle such a
query, the positions of the objects and the mobile
client must be found. For LAMSs, we first intro-
duce the broadcast-based location dependent data
delivery scheme(BBS). In this scheme, the server
periodically broadcasts reports, which contain the
IDs of the data objects(e.g., building names)and
These
broadcasted data objects are sorted sequentially

their location coordinates, to the clients.

based on their location before being broadcasted.
Then, we introduce a prefetching scheme for use
with NN(nearest neighbor) queries in LAMSs. The
rest of the paper is organized as follows: Section 2
gives the background of the broadcast model and
LDIS scheme. Section 3 describes the proposed
BBS scheme and prefetching method. The perfor-
mance evaluation is presented in section 4. Finally,
section 5 concludes this paper.

2. Background

With the advent of high speed wireless networks
and portable device, data requests based on the
location of mobile clients have increased in number.
However, there are several challenges to be met in
the development of LDISs [1], such as the con-
straints associated with the mobile environment and
the difficulty of taking the user’'s movement into
account. Hence, various techniques have been
proposed to overcome these difficulties.

2.1 Broadcast Model

Data broadcasting in a wireless network con-
stitutes an attractive approach in the mobile data
environment. However, the wireless broadcast
environment 1s affected by the narrow network
bandwidth and the battery power restrictions of the
mobile clients. Air indexing is one of techniques

that attempt to address this issue, by interleaving

indexing information among the broadcast data

items. At the same time, the client can reduce its

battery power consumption through the use of
select tuning [3,4]. Air indexing techniques can be
evaluated in terms of the following factors:

» Access Time: The average time elapsed from the
moment a client issues a query to the moment
when the required data item is received by the
client.

« Tuning Time: The amount of time spent by a
client listening to the channel.

+ The Access Time: consists of two separate com-—
ponents, namely:

* Probe Wait: The average duration for getting to
the next index segment. If we assume that the
distance between two consecutive index segment
is L, then the probe wait is L=2.

v Beast Wait:

moment the index segment is encountered to the

The average duration from the

moment when the required data item is down-

loaded.

The Access Time is the sum of the Probe Wait
and Bcast Wait. These two factors work against
each other [34]. There are several indexing tech-
niques such as the distributed indexing approach
[3], the signature approach [5], and the hybrid
approach [6].

2.2 LDIS Schemes

In the mobile computing environment, caching
data at the client’s side is a useful technique for
improving the performance. However, the frequently
disconnection and mobility of the clients may cause
cache inconsistency problems. In [7], authors pro-
pose location dependent cache invalidation schemes
for mobile environments. In this scheme, they use
bits to indicate whether the data item in the
specific area has heen changed. For instance, if
there are eight service areas and the values of the
bit vector are 00010011, this means that the data
item is valid in 4th, 7th, and 8th only. And they
organize each service area as a group in order to
reduce the overhead for scope information. In [8],
authors proposed a PE (Polygonal Endpoint) and
AC (Approximate Circle) schemes. The PE scheme
records all the endpoints of the polygon repre-

senting the valid scope, while the AC scheme uses

A=A 719 HHI2E 9% volel Mg =Y 407

an inscribed circle from the polygon to represent
the valid scope of the data.

3. Proposed Algorithms

In this section, we present two schemes for
LDIS. We first introduce the broadcast-based LDIS
scheme (BBS). In this scheme, the server broad-
casts reports which contains the IDs of the data
objects (e.g., building names) and the values of the
location coordinates. The data objects broadcast by
the server are sorted based on the locations of the
data objects. Then, we present a data prefetching
scheme and OBC in order to reduce the client’s
tuning time.

3.1 BBS (Broadcast Based LDIS) Scheme

An index gives the ability of selective tuning. The
drawback of this solution is that the client has to
wait and listen for an index segment in order to
identify the nearest data object. In the BBS method,
the server broadcast data objects are sorted sequen-
tially according to the location of the data objects.
Moreover, based on the distance between the data
objects, we assign the difference weight values to
each data object, by using the OBC (Object Boun-
dary Circle). Also, the data objects can be sent using
different broadcast frequencies, by classifying them
into hot and cold groups [9]. For instance, the data
objects selected as a hot group will broadcast more
frequent than the other groups. We discuss this
issue in the section concerning the performance eval-
uation. In the BBS method, since the data objects
broadcasted by the server are sequentially ordered
based on their location, it is not necessary for the
client to wait for an index segment, if it has already
identified the nearest object before the associated
index segment has arrived. In this method, the
structure of the broadcast affects the distribution of
the data objects. For example, as shown in Fig. 1, if
the data objects are horizontally distributed, the
server broadcasts data objects sequentially, from the
leftmost data object to the rightmost data object. A
simple sequential broadcast can be generated by
linearizing the two dimension coordinates in two
different ways: ie. horizontal broadcasting (HB) or
(VB). In HB, the
broadcasts the LDD in horizontal order, that is, from

vertical broadcasting server

the leftmost coordinate to the rightmost coordinate.

On the other hand, in VB, the server broadcasts the

LDD in vertical order, that is, from the bottom

coordinate to the top coordinate. In order to decide

whether HB or VB, the server uses the following
algorithm:

Notations:

» leftmost_P: a point that is located at the leftmost
extremity in the map(e.g., object 'a’ in Fig. 1)

» leftmost_P’. the x-axis coordinate of a point that
is located at the leftmost extremity in the map
with the exception.of leftrnost_P, where the value
of the coordinates of leftmost_P’> leftmost_P(e.g.,
object ‘b’ in Fig. 1)

» x—dist. distance between leftmost_P and leftmost_P’
based on x-axis

» y—dist. distance between leftmost_P and leftmost_P’
based on y-axis

* x-dist counter: initial value is 0

» y—dist counter. initial value is 0

* MAX: number of data objects

* NOC: number of compares(initial value is 0)

Algorithm 1. the server decision algorithm for VB
or HB data broadcasting

Input: data objects’ IDs and locations;

Output: selection result for HB or VB;

Procedure:

1: find leftmost_P

2: while(NOC <= MAX) {

3 do: |

4 find leftrmost_P’ (if more than two points have

same x-axis value, select upper point first)

5. compare x—dist and y-dist
6 If x-dist>y-dist

7 then x-dist counter++
8 else y-dist counter++

9 leftmost_P = leftmost_P’
10 NOC ++

11: }

12:}

13: if x-dist counter > y-dist counter
14: then select HB for the broadcast data object
15! else select VB for the broadcast data object

408 ARG =g A : Holehio)2 A 2 A A 4 F(20068)

'1
dist(C,,.;, @)
trzjactory of a @
moving object @
. - v
""" 3 1 ®
O 9
@ dit((xcoordinaia of C,)(x-coordinate of)
| 1
)
¥ ¥
> X
Sequence of broadcast (Forizontal Broadcast)=(a, b, ¢, d, e, f, g

Fig. 1 An example of Horizontal Broadcast

The server decides the sequential order of the
broadcast data objects based on the above algori-
thm. If the final value of x-dist counter is bigger
than y-dist counter, that is, the data objects are
horizontally distributed, the server broadcast data
objects as a horizontal order. On the other hand, If
the value of y-dist counter is bigger than y-dist
counter, that is, the data objects are vertically
distributed, the server broadcast data objects as a
vertical order.

Notations

» S server data set

+ O: broadcast data object, where O € S

* Oangit candidate for the nearest data object

* O: current broadcast data object (initially O
regarded as NN), where 0. € S

* Oy previous broadcast data object, where O, € S
*q: a query point

* Ops' one of the data items broadcast before O; in
the current broadcast cycle, where Ops € S

* Oy a data item broadcast just before O. in the
current broadcast cycle, where O, € S

* Oy ¢ the client’s first tuned data item in the .

broadcast channel

*Data first: the server’'s first broadcast data item
in the current broadcast cycle

*Flag A: if the dist(x-coordinate of Ops, x—coor-
dinate of q) is larger than dist(Oc, q), then set to
1 (initially set to 0). This flag guarantees that
the client dose not miss the NN in the current
broadcast channel

»Flag B: if the dist((x-coordinate of O.), (x- coor-
dinate of q)) <dist(Ownai, a)), then set to 1

(initially set to 0),(see lemma 1)

Lemma 1: While the data objects are sequentially
broadcasted in horizontal order, that is, from the
leftmost coordinate to the rightmost coordinate, if
O: = O;, where O; € S and dist((x-coordinate of
01, (x—coordinate of q))>dist(Owna, q), then O; and
the rest of the broadcast data objects are located
outside of the NN range.

Proof: Given a query point 'q’, if the Omna is an
object ‘e’ and O. is an object 'f’, as shown in the
Fig 1. If dist((x-coordinate of the object 'f'), (x-
coordinate of 'q’))>dist(’e’,’q’), then the objects 'f’
and ‘g’ are located outside of the NN range and
thus the client stop tuning the broadcast channel
and select the object ‘e’ as the NN. There are two
cases in which the clients tune to the broadcast
channel.

Case 1: the client could not identify the NN in
the current broadcast cycle, since it was not able
to determine whether or not the desired data item
was broadcasted before it tuned to the broadcast

channel(see Fig. 2).

1 e
o
© |
.
1 1
H i Oz
i
'
. CP
®@ | |
b !
q | | i Oue Gea
- 1
&1 1 ! ®
1
A !
The cllent starts to wne the 1 IIM T, Ta: x
broadcast channel at T
Seq of broadcast (Hor: {a.b,c.de.fgh}

Fig. 2 the client could not identify the NN in the
current broadcast cycle

Lemma 2: While Flag A=0 and Oy = Data first,
the client could not identify the NN in the current
broadcast cycle.

Proof: Let the client begin to tune at time T} At
T, O=0; and Ownasi is Oisee Fig. 2. At Tuy,
O~0i1 and Omai is O;, since dist(O;, q)<dist(Oxy,
a). At Tio, Oc=Oiz and Ownai is Owg, since dist
(Ois2, Q)< dist(0;, @) and dist(Onz,)< dist(Oxn, q).
At Tus, O=0i3 and Ocgnai is Ois, since dist(Oio,
@)< dist(Ons3, q). Then, the client stops tuning to

AA 718 MH|2E AT woler e 29 409

the broadcast channel, since dist(O:ng g)<dist(x-
coordinate of Ops, x—coordinate of q)(see lemma 1).
However, the client could not guarantee O:ne as the
NN, since it missed the Oi-, such as O data
item, and one of them could also be Oungi. Thus, if
Flag A=0 and Flag B=1, then the client stops
tuning to the broadcast channel and switches to
doze mode, until the next index segment arrives.

Case 2: the client is able to identify the NN
from the current broadcast cycle, since it is sure
that the desired data item is going to appear in the
current broadcast cycle(see Fig. 3).

Lemma 3: If Flag A is set to 1, then the client
can identify the NN from the current broadcast
cycle.

Proof: Let O. be data item ’'c’ in Fig. 3. After
the client receives data item 'd’, Flag A is set to
1, which means that data item 'c’ and the data
items before 'c’, such as 'a’ and ’'b’, are not
candidates for the NN, since the distances from the
x~-coordinates of 'a’, ‘b, and ‘¢’ to the x-coordinate
of q are longer than dist(d, q). Consequently, we
can conciude that the client does not miss the NN
and can find it from the current broadcast channel.

dist(G ... Q)

?
®

®

®

S

/V

dist((x-coordinate of C),(x-coordinate of q))
Sequence of broadcast (Horizontal Broadcast): {a, b, ¢, d, e}
Fig. 3 The client is able to identify the NN in the
current broadcast cycle

Definition 1: If O is. Data first, then the client
can identify the NN from the current broadcast
cycle.

We assume that each client has a queue, in order
to maintain previously broadcasted data objects.
The client uses the following algorithm to identity
the NN.

Algorithm 2. the client algorithm used to identify

the nearest object

Input: locations of the clients and the data objects;

Output: NN;

Procedure:

1: if(optimal tuning is required)

2. then read the first broadcast data item and go
to doze mode until the index segment arrives

3 return NN using index segment

4: else if (optimal latency is required) {

5 do{

6 for each data object O € S

7 if(Flag A=0 and Flag B=1)

8 then stop tune and go to doze until the
next index segment arrives

9 else if (O is the first broadcast data object)

10: then O; = Oqndi

11: else if dist(O., q)< dist(O,, q)

12: then Oc = Ocwndi

13: else Op = Ondi

14: } while (getting to the index segment or Flag

B=1)
15 Onai=NN

16! return NN

3.2 Prefetching Scheme

The result of the NN query is changed if the
client moves. Thus, the client has to tune its
broadcast channel every time it moves. Data pre-
fetching has been proposed as a technique for
hiding the access latency of data item that defeat
caching strategies. In this section, we present a
prefetching method for use in LDIS. In this method,
the client prefetches the data object for future use.
Let w, be the size of prefetched data objects. The
client adjusts the size of w, according to the speed
and size of the cache. Moreover, in order to adjust
the value of k based on the k—nearest objects, the
proposed scheme simply adjusts the size of w,. Let
client’s current location be point ¢ and object’s
location be point p. And we denote the Euchdian
distance between the two points p and ¢ by dist(p,
g). In the have dist(p, ¢q) =
Vipe—pa)? + (py—py)?

Let P :={ py .., Do D Do D1 P2 -, Pl be a

map, we

set of n distinct points that represent the data

410 ARARIY=EA : dolepwol 2 A 32 A A 4 F(A058)

objects, and ¢ represents a query point.

Notations:

w,n=0and (wWwn 20

target= an object po, where po # pp, and {p-n, Do,
pr} € P then distpy, g) < dist(Vps, ¢) or dist{py,
q) = dist(Yps, q)

Dmin = an object p-y, where dist(p-w-m, @) < dist(p-w,
q) = dist(p-wn, @)

Dmax = an object p,, where dist{pu-n, @) = dist(pw,
q) = dist(ppn, @

A query can be categorized as the nearest or the
k-nearest based on the number of returned objects.
The number of returned objects depends on the
value of wp,. If we regard the value of w, as n, the
number of returned objects is 2n + 1. Hence, w,=
set of 2n + 1 points. For instance, if the value of n
is 0, the number of returned objects is 1 (nearest
neighbor) or if the value of n is 3, the number of
returned objects is 7 (7-nearest neighbors). In order
to adjust the value of k of the k-nearest objects,
the proposed scheme simply adjusts the size of w.
The formal description of the algorithm used for
prefetching at the client side is as follows:

Algorithm 3. Client algorithm for data prefetching
input: sorted broadcast data objects according to
the distance between the q and the data object;
output: set of final k-NN;

procedure!

—

. while (a client looking for the nearest object) {

2: active mode (listen to the broadcast channel)

3. if (desired data comes from the server) { // by
using algorithm 1

4: then current broadcast data object= p0 and
prefetch a data object from pmin tO Pmax }

5 else

6: wait until the desired data comes from the
server

7}

8. doze mode

Lemma 4: Given a point ‘q’, wp contains k-NN

query set, if Sy is sorted according to the distance

between the 'q’ and p;, where pi € Sq.
o, pend. IS, is

sorted ascending order according to the distance

Proof: Let S; = {pi, pir, pis2

between the 'q’ and p;, then dist(p;, q) <dist(pin,
Q) <dist(piz, @) .., <dist(pin, ¢). Hence, if the
value of k-NN is n, set of k-NN = {pi, pin, pi=
.., Disn}. Therefore, w, contains k-NN query set
from a query point 'q’.

4. Performance Evaluations

In this paper, we evaluate the performance with
various kinds of parameters settings such as the
client’s speed, the size of the service area, and the
distributions of the data objects. Then, we evaluate
the cache hit ratio with parameters such as the
size of w, and the service coverage area. Finally,
we compare the performance of the BBS scheme
and the R-Tree index[12] scheme and the D-tree
index[11] scheme. We assume that the broadcast
data objects are static such as restaurants, hospi-
tals, and hotels. We use a system model similar to
that in [8,12]. The distance can be computed using
the Euclidian distance between the two points p
and ¢ as defined by dist(p, ¢). The whole geome-
tric service area is divided into groups of MSSs
(Mobile Supporting Stations). In this paper, two
datasets are used in the experiments (see Fig.
4(a)). The first data set D1 contains data objects
randomly distributed in a square Euclidian space.

The second data set D2 contains the data objects
of hospitals in the Southern California area, which
is extracted from the data set at [13]. Table 1

Table 1 Simulation Parameters

Description Setting
Service area 1000(km)*1000(km)
% of service area 30-100
No. of data items 10-100
Size of data objects 256bytes -8192bytes
Broadcast bandwidth 144bps
No. of clients 0-90
Minimum moving speed of the client 10{km/h)
Maximum moving speed of the client 90(km/h)
Distance of move 5-50
Size of Wq 0-5
Size of Wp 0-5
No. of broadeast period 50-100
Size of max_OBC Longer than 900m

AR 71 Mul2E 9% vlolet FE 2 411

OBC(Object Boundary Circle)

(a) Two scope distributions for performance evaluation (b) OBC: (1) min_OBC: minimum boundary circle is

picked as a hot data object, such as object A (2) max_OBC: maximum boundary circle is picked as a hot data

object, such as object D (3) uniform: all data objects are broadcasted in same frequency

Fig. 4 Scope distributions and OBC

shows the notations and default parameter settings
used in the simulation.

4.1 Latency

In this section, we evaluate the access latencies
for various parameter settings such as the client’s
speed, the size of the service area, and the num-
bers of clients. In this paper, we present the Object
Boundary Circle (OBC) which represents the dis-
tance between the objects as shown in Fig. 4(b).
The radius of circle represents a distance between
objects. And a circle which has the longest radius
is selected as a hot data object such as ¢ and d in
Fig. 4(b). The server broadcasts data objects with
different frequency such as hot and cold data
objects [9].

Effect of the size of the service area In this
section, we study the effect of the size of the
service area according to the client’s speed. We
vary the service coverage area from 5% to 100% of
the whole geographic area. The query arrival time
is decreased as the size of the service area
decreases since the size of the entire broadcast
data items is reduced. However, the query arrival
time is significantly increased when the client’s
speed increase and the client goes outside of the
service coverage area, as shown Fig. 5(a). In this
case, the client’s cached data items become invalid
and the client has to tune the broadcast channel

again.

Effect of the client’s speed In this section, we
study the effect of the client speed. First, we vary
the client’s speed from 5 to 50 in D1. When the
client’s speed is the lowest, broadcast size of 10%
(of the coverage area) is the best. However, as the
client’s speed increases, its performance is degraded
in comparison with that of others since the most of
the client’s speed exceeds the service coverage area
as shown in Fig. 5(b). Second, we study the
performance for different parameters such as min
OBC, max OBC and uniform (see Fig. 4(b)) in D2.
In this experiment, we assume that the clients are
uniformly distributed in the map. Fig. 5(c) shows
the result as the client speed increases from 5 to
50.

Effect of the distnbution of data objects and
the clients’ location In this section, we study the
effect of the distributions of the data objects and
the clients’ location. First, we assume that the
clients are crowded in a specific region such as
downtown. Those data objects which are located in
such a region are selected as hot data objects. In
this experiment, we evaluate the performance in
relation to four different parameters as follows:

* Uniform_100%: The server broadcasts data ob-
jects with the

same frequency such as at

broadcast in [9] and the service coverage area is

412 AR AT =7 A vojehdle]x A 32 @ A) 4 Z(0068)

60
S p— | | S0 t—10%] —&—min_obc
50 | " g =
. speed 540 -3 30% - — EE B max_obc
g S 60%] & uniform .
k] % 30 g1 =
- - 90% s A
g 820 F e g 8 10
8 § s :
0 0
100 90 80 70 60 50 40 30 20 10 5 5 10 15 20 25 30 35 40 45 S0 5 10 15 20 25 30 35 40 45 50
% of service area Speed{km/h) speed(km/h)
(a) (c)
Fig. 5 Access latency
. 40
40 DOuniform_100% Ooni et o—wez
niform_100% 45
35 Bhot_100% 35 v ©
30 Duniform_50% a 30 Buniform_50% a5
- 2 - S
£25 D hot_50% E2 2%
220 220 s
S
8is s 2o
10 10 Qs
S 5 0
o 0 5 5 & Z
10 15 20 25 30 35 40 45 50 1015 20 25 30 35 40 45 50 o e . w
Speedl(km/h) Speed(km/h} Speed{km/h}
(a) (©)

Fig. 6 Cache hit ratio

the whole geographic area.
Hor_100%: The server broadcasts data objects

with different frequencies such as those corres-
ponding to hot and cold data objects and the
service coverage area 1S the whole geographic

area.

Uniform_50%: The server broadcasts data objects
with the same frequency and the service coverage
area is set to 50% of the whole geographic area.

Hot_50%:

with different frequencies such as those cor-

The server broadcasts data objects

responding to hot and cold data objects and the

service coverage area is set to 50% of the whole

geographic area.

4.2 Cache Hit Ratio

This section evaluates the cache hit ratio for
various parameters settings such as the size of w,
the client’s speed and the size of the service area.
First, we varv the client’s speed from 10 to 50 in
D2 As shown in Fig. 6(a). the number of cache
hits decreases as the client’'s speed is increased.
The broadcast hot data object does not affect the
client’s cache hit ratio. In this case, the uniform_
1009% outperforms the uniform_50% since clients
discard the cached data object if they move to the

other service area. Second, we vary the client’s

speed from 10 to 50 in D1. As shown in Fig. 6(b),
the number of cache hits decreases as the client’s
speed is increased. Third, we vary the value of wp
from 1 to 5 in D1. As shown in Fig. 6(c), the
number of cache hits increases as the client’s
speed is decreased and the size of wp increases.
4.3 Comparison of the Performance of the BBS
Scheme with the R-Tree and the D-Tree
index
In this section, we compare the BBS scheme
with the R-Tree and the D-Tree index. First, we
vary the size of the data item from 256 bytes to
8192 bytes in D1 and D2. In this experiment, the
server broadcast 506 data items periodically to the
clients. In D2, we also evaluate BBS with max_
OBC (see Fig. 4(bh)). Since the clients do not need
to wait and tune an index segment if they have
identified the BBS

shows lower latency compare to the R-Tree and

already the nearest object,
the D-Tree index as the data size increases as
in Fig. 7(a). The BBS with max_OBC

outperform the R-Tree and the D-Tree index and

shown

BBS in D2 as shown in Fig. 7(b). Second, we vary
the number of clients from 50 to 300. As shown in
Fig. 7(c) and Fig. 7(d), the BBS
latency compare to the R-Tree and the D-Tree

shows lower

A 71 MHIEE 93 dojel 2 2 413

30 [e R tres index | L e ——
% 25| —O—ses 320 || B85S]
£ 2! __D-tree index c BBS with mavaBCJ
< 2 15 ~1 D-tree index | E— —m
® 45 o | ——R-tree index |
@ o 10 /
o 10 @
9] . [0 5
3 5 A 3
< 0 < 0 Lt
256 512 1024 2048 4096 8192 256 512 1024 2048 4096 8192
Size of data(bytes) Size of datalbytes)
(a) (b)
40 S —— 1200
O iniform_100% | —&—B8S &
30 hot_100% > 1000 BBS with max_OBC e
% D uniform_50% ' % 800 |~ D-tree index ';/’0 @
0 hot_50% =t R-tree index , .
%’ 20 e - 600 & / LT
a o -
2 200 &
0 0 Lot :
10 15 20 25 30 35 40 45 50 1 50 100 150 200 250 300
Speed(km/h) Size of data(bytes)
(c) (@
9 9 ——=
8 | OD-tree i - g i« DOD-tree
7 (28BS 4 7 @8BS ...
g6 26
=" =g
24 24
fest [
53 s 3
2 2
! [!
0 L[k . 0
256 512 1024 2048 4096 5 50 100 150 200
Size of data(bytes) No. of clients

(e)

()

Fig. 7 Compare the Performance of BBS Scheme with the R-Tree and the D-Tree Index

index in D1 and the BBS with max_OBC shows
the lowest latency compared to the R-Tree and the
D-Tree index and BBS in D2. Third, we compare
the tuning time of the BBS with the D-tree index.
In this experiment, we assume that the index
segment is broadcasted once at the beginning of
the broadcast cycle. Fig. 7(e) shows the result of
the tuning time between the BBS and the D-tree
index as the sizes of the data items are increased
from 256bytes to 4096bytes.
figure, the BBS spent lower tuning time than the

As shown in the

D-Tree index, since the client do not need to wait
and tune anymore if they have already identified
the nearest object, while the D-Tree index scheme

has to wait an index segment even if the desire
data item is come to the broadcast channel. Finally
we compare the tuning time of the BBS and the
D-Tree index as the number of client increases
from 5 to 250. Fig. 7(f) shows the result.
Comparison of BBS with optimal_latency In this
section, we study the access latency with the BBS
and opt_latency(optimal access latency) in D1. In
this experiment, we assume that the clients are
uniformly distributed in the map. Fig. 8(a) and Fig.
8(b) show the results of the access times as the
number of clients and the size of data increase
respectively. Fig. 8(c) shows the result of the

access time between the opt_tune and BBS as the

414 FHAEE =R A dolepuio] X A 32 A Al 4 Z(20058)
1000 70 2
s00 | B¥Optiatency | .. DOpt_tatency 1.8 H OOptatency
800 : RS 1.6 H @BBS
§700 50 p-TTITTITTITS - - §1.4
S 600 w0 g12
< 500 9 1
g 400 20 808
2 300 206
200 0.4
100 f- 0.2
0 o
10 50 100 150 200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500
No. of clients 128 256 512 1024 2048 4096 No. of data

(a) (b)

(c)

Fig. 8 Comparison of BBS with optimal latency

number of data increase. As shown in the figure,
BBS performs closely as same as the opt_latency.

5. Conclusions

In this paper, we studied the broadcasting and
prefetching schemes for LDIS. For broadcasting in
LDIS, we present the BBS and prefetching me-
thods. The BBS method attempts to reduce the
the the
Furthermore, the proposed prefetching and OBC can

access and tuning time for client.
also reduce the query response time and the tuning
time respectively. We do not change the previous
index schemes, such as R-tree index [10] and D-
tree index {2,11]. Rather, we sort the data objects
based on their locations and the server broadcasts
the data objects sequentially to the mobile clients.
With the proposed schemes, the client can per-
forms the k-NN querv processing while it moves
without having to tune the broadcast channel, if the
desired data items have already been prefetched
into the cache. Therefore, the client can reduce its
query response time and the battery power con-
sumption. The proposed schemes were investigated
in relation to various environmental variables such
as the distributions of the data objects, the average
speed of the client and the size of the service area.
The experimental results show that the proposed
BBS the

latency and the tuning time compared to the R-tree

scheme significantly reduces access
index and the D-tree since the client does not
always have to wait for an index segment.

In this paper, we are not considering the moving
data objects in LDIS. Hence, we are planning to
extend this study to the case of a moving object

database. Finally, we are also planning to investi-

gate the cache replacement scheme in a future

study.
#3128
[1] Dik Lun Lee, Jianliang Xu, and Baihua Zheng,

"Data Management in Location-Dependent Infor—
mation Services,” IEEE Pervasive Computing,
1(3), 2002.

J. Xu, B. Zheng, W.-C. Lee, and D. L. Lee,
"Energy Ezcient Index for Querying Location—
Dependent Data in Mobile Broadcast Environ-
ments,” In Proc. of ICDE, 2003.

T. Imielinski, S. Viswanathan, and B.R.Badrinath,
"Data on Air: Organization and Access,” IEEE
Trans. Knowledge and Data Eng, 9(3), 1997.

T. Imielinski, S. Viswanathan, and B.R.Badrinath,
"Energy efficient indexing on air,” In Proc. Of
SIGMOD, 1994.

W. C. Lee and D. L. Lee, "Using signature
techniques for information filtering in wireless and
mobile environments,” Distributed and Parallel
Databases, 4(3), 1996.

Q. L. Hu, W.-C. Lee, and D. L. Lee, "A hybrid
index technique for power efficient data broad-
cast,” Distributed and Parallel Databases, 9(2),
2001,

Jianliang Xu, Xueyan Tang, and Dik Lun Lee,
"Performance Analysis of Location-Dependent
Cache Invalidation Schemes for Mobile Environ-
ments,” IEEE Trans. Knowledge and Data Eng,
15(2), 2003.

Baihua Zheng, Jianliang Xu, and Dik L. Lee,
"Cache Invalidation and Replacement Strategies
for Location-Dependent Data in Mobile Environ-
ments,” IEEE Trans. Comp., 51(10), 2002.

S. Acharya and Michael Franklin, “Broadcast
Disks: Data Management for asymmetric commu-
In Proc. of SIGMOD,

[21]

[3]

[4]

[5]

[61]

[7]

[81]

[9]

nication environments,”
1995.

A. Guttman, "R-trees: A dynamic index structure
for spatial searching,” In Proc. of SIGMOD, 1984.
[11] J. Xu, B. Zheng, W.-C. Lee, and D. L. Lee,

[10]

[12]

[13]

(14]

(18]

A 71wk AH =g A dolg dE 2d

"D-tree: An Index Structure for Planar Point
Queries in Location-Based Wireless Services,” In
IEEE Trans. on Knowledge and Data Engin-
eering (TKDE), 2004.

Daniel Barbara, “Sleepers and Workaholics: Cash-
ing Strategies in Mobile Environments,” In Proc.
Of SIGMOD, 1994.

Spatial Datasets, http://dias.cti.gr/ ytheod/research/
datasets/spatial.html.

N. Roussopoulos, S. Kelley, and F. Vincent.
"Nearest neighbor queries,” In Proc. of SIGMOD,
1995.

S. Acharya, R. Alonso, M. Franklin, and S.
Zdonik, "Location-based Spatial Queries,” In Proc.
Of SIGMOD, 2003.

Ll
AR AES =R 1 HolEluo] 2
ARAAIE F=x

% &

Yuoasi=ga ; dolehol s
AxdAs e 32

g A

ABAE}3=EA)
ARAA3E

o]

e 0] 22

2L
I

415

