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Abstract Code size reduction is ever becoming more important for compilers targeting embedded
processors because these processors are often severely limited by storage constraints and thus the
reduced code size can have a positively significant impact on their performance. Various code size
reduction techniques have different motivations and a variety of application contexts utilizing special
hardware features of their target processors. In this work, we propose a novel technique that fully
utilizes a set of hardware instructions, called the multiple load/store (MLS), that are specially featured
for reducing code size by minimizing the number of memory operations in the code. To take advantage
of this feature, many microprocessors support the MLS instructions, whereas no existing compilers
fully exploit the potential benefit of these instructions but only use them for some limited cases. This
is mainly because optimizing memory accesses with MLS instructions for general cases is an NP-hard
problem that necessitates complex assignments of registers and memory off-sets for variables in a
stack frame. Our technique uses a couple of heuristics to efficiently handle this problem in a
polynomial time bound.
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bedded system are heavily limited by resource
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complex and large to satisfy diverse demand from
the market, efficient use of limited storage
resources are ever becoming more important for

compilers targeting these processors. To attain a
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desired performance goal even with such limited
storage, the pfocessors are designed assuming
software that runs on them would make heavy use
of their various special hardware instructions and
addressing modes [1, 2]. One such example is the
MLS instructions, which are often encountered in
modern processors such as Motorola Mcore, ARM
7/9/10, Fujitsu FR30 and IBM R6000. The following
shows an example of the MLS instructions in an

ARM processor [3]:

Idmia/ stmia  Vease>sTos 5 Fm}

where m<16 and all the operands (haserTisTas" " 75T)
can be any of the ARM general-purpose registers:
r0,rl,--,rl5.

These instructions allow large quantities of data
to be transferred more efficiently in a single
operation between any subset (or all) of the 16

registers and the memory locations starting at the
address designated by the register content of Tease.

For instance, the instruction, ldmia rl,{r3,r4,r8}
loads a block of three words
Mem[rl], Mem[r] + 4] anq Mem[r1+8]

respectively into the registers in an increasing
order of their numbers, that is, r3, r4 and r8 The
order of registers appearing inside the braces does
not affect the data transfer result. The main
advantages of MLS instructions are two fold:
scode size reduction through compaction of a
number of memory operations into one instruction
word?, and
srunning time reduction through pipelining of
memory accesses.
To illustrate this, consider the example in Figure
1, which shows the C

assembly translated by a commercial ARM native

source code and its

compiler. The figure also shows the memory
offsets the compiler assigns the variables in the
stack. From this memory layout, we can see that
the ARM compiler, like many other conventional
ones, performs memory assign-ment simply in a

declaration or lexicographic order of variables. This

1) In an MLS instruction, each register operand is encoded as a
single bit.

o
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naive approach does not satisfy the above
requirements for }egisters and memory offsets in
an MLS instruction and so impedes the chance to
use it in the code. In consequence, even after
traditional optimizations such as redundant load and
store elimination, the ARM compiler output in
Figure 1(c) still has 17 loads/stores in total,
including just a single multiple store generated
from double stores (ie., two stores). Furthermore,
even this single use of the MLS may not bring
any advantage in the code size, because one ALU
instruction, add rl, sp, #8, was inserted to initialize
the base register rl1 for the MLS. This fact implies
that the

aggressive approach for memory and register

ARM compiler needs a much more
assignment to take full advantage of hardware
support for the MLS.

1ldr ro, [sp, #0x18]
ldr r1, {sp, #0x14}
a=za+b-c¢c+4d; 1dr r2, (sp, #0%10j}

1f {a > b) { add ro,ro,r1
gstring(a, dj; sub 10,Y0,x2
£=f -d; 1dr r2, [sp, #0xc]
add ro,ro,rz
else { str ro, [sp, #0x18}
gstringla, b); cmp ro,ri
ft=a+b; ble |11.48}
d = b+ d; mov ri,r2
e=a+ f; bl ||astring||
1dr ro, [ep, #4)
f=4*a; 1dr r1, [sp, #0xc]
d=f - d; sub 10,r0,ri
.. str 10, {sp, #41
b {11.88
(a) A fragment of C source code 111.48] blsllqstx':lngn
1dr ro, {sp, #0x18}
ldr r2, [sp, #0X14]
1dr r3, [sp, #0xc]
add ri,ro,r2
str ri, [8p, #4]
10,10,
lep - #oxod] : f 2 n':;';;
{sp - #oxo8] : e add r2,r2,r3
{sp - #0x0c] : d stmia r1,{ro,rz}
lsp - #o0x10] : ¢ |11.88| 1dr ro, [sp,#oxc]
[sp - #0x14] : D 1dr r2, (sp, #0x18]
[ep - #0x18] : a mul ri,r2,ro

The original mem sub r2,r1,ro
(l:)mxt in the stack frazz str r2, [8p, #0xc]
Y 3 ! str r1, [sp,#4]

represented in relative off-

sets from the stack pointer (c) ARM native compiler output

Figure 1 Benchmark code, and its assembly with the
memory layout generated by the ARM
native compiler with a-02 optimization
option

In this paper, we report our recent study on a
problem, which we name the MLS problem, whose

goal is to find an optimal register and memory
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assignment that leads us to fully capitalize on the
advantages of MLS instructions. In our example, an
ideal memory assignment for this problem would be

the one in Figure 2(a).

{ep - #ox04] : ¢
{sp - #0x08} : b
{sp - #0x0c] : a
{sp - #ox1i0} : d

i:; :2'{?'“’(5] {sp - #0x14] +

. [8p, #8]

ldr rz, [ep,#4] lep - #ox18] . e

add ro,ro,r1

sub 10,Y0,r2

1ldr r2, {ep, #0x10]

add ro,ro,r2

str ro, isp, #oxc}

(a) Optimal memory assignment for MLSs

add rio, sp, #0x10
add r9,sp, #4 R
ldmia r9,{ro,ri,rz2,r3}

cmp 10,r1

ble }|11.48| add r2,r2,r1
mov ri,r2 sub r2,r2,ro

bl | {gstring|| add rz,r2,r3
1dr ro, [sp,#ox14) str r2, [sp, #0xc]
1dr ri, [8p,#0X10] cmp r2,rl

sub ro,ro,ri ble }11.48|

str ro, {sp, #0x14] mov ro,r2

b |11.88| bl |lgstring|

ldmia rio,{ro,ri}
sub ri,rl, Yo
atr ri, [sp, #0x14]

|11.48| bl |jgetring]||
ldr ro, [sp,#oxc]
1ldr r2, (ep, #8]

1dr r3, [sp,#0x10) b |11.88]
add ri,ro,r2 |11.48} b1 }{gstring}|
str ri, [sp,#0x14) add r9,sp, #8

ldmia r9,{ro,r2,¥3}
add r1,r2,r0

add rz2,rz,ri

add ro,ro,r3

stmia rie,{ro,r1,r2}

|11.88| add r9,sp,foxc

ldmia r$,{re,r2}
mul rl,xo,r2

8sub ro,ri,r2

stmia rio,{ro,ri}

{c) Optimized code output both after
memory and register assignment

add ro,ro,ri

B8Lr ro, [sp,#ox18)

ada rz,r2,r?

str 12, [8p, #0X10]
|11.88| ldr ro, [ep,#0x10)

ldr r2, [sp, #oOxXC]

mul ri,r2,ro

gub r2,ri,ro

str r2, [sp, #ox10]

atr ri, [sp,#ox14)

(b) Modified ARM code output
with the memory assigament in (2)

Figure 2 Improving the original code by using
MLSs with better memory & register
assignments for local variables: To

obtain (c), local instruction scheduling

and other traditional optimizations were

applied

Reflecting this new memory layout, we may
change the original code as listed in Figure 2(b),
where we notice that more neighboring loads/stores
addresses under this

are accessing contiguous

layout. But we also notice that despite this
improved memory assignment, they still cannot be
converted to MLS instructions. This is of course
because without a proper register assignment, a
smart memory assignment alone cannot enable
neighboring loads/stores to aggregate into an MLS.
For instance, although the last two stores in Figure
2(b) access contiguous addresses (0x10, 0x14), an
MLS

since it stipulates that a lower address be assigned

instruction cannot be generated for them

a lower register number in its operand. Thus, in
this case, if the address 0x14 1is assigned the
register rl, then the other one 0x10 must be
re-assigned the register r0.

This example convinces us that optimizing a
program with MLS instructions is quite a complex
memory assignment problem tangled with a register
assignment (or we may call register renaming)
problem. On top of this, when we solve this
problem, we must also consider instruction resche-
duling simultaneously because a single large
memory transfer formed together from many small
ones scattered in the code mostly results in better
performance.

Our final code optimized with Idmia/stmia is
shown in Figure 2(c). As compared to the original
code, the code size is reduced about 20%. If we
only consider memory operations, the number of
loads/stores are reduced about 60%. Since memory
accesses in an MLS can be overlapped by pipe-
lining when data are actually transferred, we may
also expect some significant amount of reduction in
the total memory access time.
there are three MLS

instructions, each of which is combined from double

In the optimized code,

loads/stores. At first glance, they seem unprofitable
in terms of code size, as we already stated, due to
additional ALU operations for base register initia-
lization. But we sometimes found in real cases that
these ALU operations are often exposed to con-
ventional optimiz-ations such as common subex-
pression elimination(CSE) and redundancy elimi-
nation, and thereby some of them were removed. In
this example, one add was removed since the base
address in the register rl0 is reused by two of the
MLS instructions. In fact, note in the code that one
more add was removed for another MLS (converted
from triple stores) with rl0 as its base register.
Due partially to temporal locality embedded in real
code, we observed this reuse of base addresses
was made possible in our experiments.

To summarize, finding an optimal solution to the
MLS problem is an extremely difficult task com-
NP-complete optimization

plicated with several

subproblems. Therefore, it is not surprising to

discover that all the compilers we tested in our
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experiments fail to utilize the MLS instructions to
such a degree as we demonstrated in Figure 2, and
only use them for special occasions, such as
exception handlers, function prologues/epilogues and
context switches [4], where recognizing block
memory copies for MLS instructions are rather
trivial. All this inevitably implies that to utilize
MLS instructions, the users should hand-optimize
their code in assembly, making programming
complex and time consuming.

The purpose of this paper is to discuss our
heuristic-based algorithm that solves the MLS
problem efficiently in a polynomial time bound.
Although our algorithm does not guarantee to find
an optimal solution to the MLS problem for all
cases, our experiment with real benchmark
programs exhibits its effectiveness on most cases.

In Section 2, we start our discussion by relating
our study with previous ones that worked on
broadly similar but completely different problems
from ours. In Section 3, we describe our algorithm,
and in Section 4, present our experimental results
and compare ours with other compiler results. In

Section 5, we conclude.

2. RELATED WORK

Memory assignment of scalar variables in a stack
frame had hardly been a crucial issue in compiler
research until about a decade ago when the
utilization of special addressing modes became
important for typical embedded processors. Since
then, there has been much work on code size
reduction through optimal memory assignment for
such addressing modes. One of the earliest work was
done by Bartley [5] who first addressed the simple
offset assignment (SOA) problem, the problem of
assigning scalar variables to memory such that the
number of explicit address arithmetic instructions are
minimized by using auto-increment/decrement add-
ressing modes. Later, Liao et al. [1] formally proved
that the SOA problem can be reduced to the
maximum-weighted path cover (MWPC) problem,
and thus that it is NP-complete. Hence, to cope with
the SOA problem fast in polynomial time, they
proposed a heuristic based on Kruskal's maximum

spanning tree (MST) algorithm.

2 &8 AR A A 8 I QN5

Inspired by the previous work, many researchers
extended the work in various aspects. Leupers and
David [6] developed a genetic algorithm-based
technique to solve the SOA problem by simul-
taneously handling arbitrary register file sizes and
auto-increment ranges. Rao and Pande [2] opti-
mized the access sequence of variables by applying
algebraic transformations on expression trees to
obtain the least cost offset assignment for the SOA
problem. Choi and Kim [7] proposed an integrated
approach where the SOA problem is coupled with
instruction scheduling. Zhuang et al. [8] discussed
an approach of variable coalescence which enables
both code and data size reduction. A similar study
was also conducted at the same time by Ottoni et
al. [9]
Coalescing SOA algorithm that performs variable

who discussed an approach based on

coalescing and offset assignment simultaneously.

All these previous studies are in some sense
related to ours in that they aim at finding optimal
memory (offset) assignment for certain hardware
mstructions or addressing modes. But they are also
clearly different from ours in that they all center
around only the SOA problem, which varies from
our MLS problem in many ways. In fact, our
problem subsumes the SOA problem because as
discussed in Section 1, ours must find not only
optimal memory assignment but at the same time
optimal register assignment along with the load/
store scheduling that facilitates maximum utilization
of MLS instructions. This means that we need a
more aggressive approach to handle our problem
than previous studies.

To our best knowledge, the only study on code
optimization with MLS instructions was published
most recently by Nandivada and Palsbergby at
Purdue [10]. In their study independent from ours,
they investigated the use of SDRAM for opti-
mization of spill code. The core of their problem is
to arrange the variables in the spill area such that
SDRAM is
Their

loading to and storing from the
optimized with MLS

differs from ours in two key points.

instructions. work

First, their technique focuses on running time not
code size in the sense that, as explained in Section
1, it generates MLS instructions only from double
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their
problem to be a special MLS problem for double

loads/stores. For this reason, we deem
loads/stores, which is simpler than our general

problem. Second, their algorithm is based on
integer linear programming (ILP). As mentioned
above, the MLS problem is composed of several
optimization subproblems tightly coupled to each
other. So, the ideal strategy for this would be to
solve the whole problem in a single, combined
phase, where all subproblems are simultaneously
considered. In their approach, therefore, they
converted their problem to an ILP problem so that
they solve it in a coupled, single phase. Obviously
one critical drawback of such a coupled approach is
that it uses an exponential time algorithm as they
also did in their work. To avoid this excessively
high time complexity, we take a more decoupled
approach where we apply fast polynomial-time
algorithms to solve each subproblem in a sequen-
tial, step—by-step manner. In Section 3, we present

our algorithm based on this decoupled approach.

3. SOLVING THE MLS PROBLEM

In our approach, the information about memory
access patterns is first culled from the code and
summarized in a graph form. In the next phase,
this form is used to find an optimal schedule for
MLSs. Then, this load/store scheduling result is in
turn used to determine the best possible offsets of
variables in memory. Only after code has been
scheduled and compacted by MLSs with all their
variables fixed to- memory, comes the assignment
In this
section, we discuss how the original MLS problem

of physical registers to the variables.
is divided in these phases and how each phase is
structured in a decoupled fashion.

3.1 Dividing the Problem in Three Phases

To more formally describe the MLS problem, we
define parallel loads and parallel stores to be
respectively a block of loads and stores that can be
executed simultaneously. In our approach, they are
identified from the code as the first step of
generating MLSs. Ideally, each parallel load/store
block can be scheduled together and converted
to an MLS

conversion is not

directly instruction. However, the

always so straightforward

because it stipulates beforehand that all the three
constraints below be satisfied.

For the definition of the constraints, we follow
the convention of the ARM architectures (see
Section 1) to assume our MLS instructions is of
the form:

{ri, r2, ..., tm} = Memlrsase] // multiple load
Meml[rsase] = {11, 12, ..., Im} // muitiple store
where m<n and n is the number of general-
purpose registers on the target architecture.

RF-size constraint: This is enforced because
the MLS problem involves the instruction sche-
duling issue. When loads/stores are moved together
to form a single MLS, it normally increases the life
span of each value associated with them and so
the overall register pressure in the code. Therefore,
if there exists a point where the register pressure
becomes higher than the actual register file size,
then some of those loads/stores responsible for it
may not be executed in the same MLS.

M-sequence constraint: The sequence of the
memory locations where the m words, m<n, are
fetched must be contiguous starting from the
address

Memlr,,. 1, Memlr,., +4]...., Mem|r,,, +4m—4].

specified by the content of rpgse

R-sequence constraint: The number sequence
of the m registers where the memory data are
transferred may not be contiguous, but the se-
quence must be strictly increasing.

Simply stated, the MLS problem is of finding
optimal blocks of parallel loads/stores subject to
these constraints. In our decoupled approach, it is
divided and conquered individually in separate three
phases, as portrayed in Figure 3. Starting from the
graph called LS-regions, the initial information
about parallel loads/stores is gradually shaped into
the final form, called an mPLS graph, as each
constraint is applied in the subsequent phases. At
loads/stores

the end of Phase 3, the parallel

remaining in an mPLS graph satisfy all the
constraints; thus each block of them can now be
converted safely to an MLS.

In the next subsections, we will detail each phase
of Figure 3. In our algorithm, we assume that
conventional code generation with register allocation

has already been performed for our input code. For
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M-sequence
£ constraint
R-sequence
traint
MPLS Graph Emsm,
L N}
| phaset ? phase 2 1‘ phase 3 |

Figure 3 Gradually shaping up the parallel load/
store blocks with each constraint in three

for MLS instruction generation

simplicity, we also assume no memory address

aliasing.

3.2 Computing Parallel Loads and Stores

Figure 4 shows the subroutine build PLS for
Phase 1 whose task is to identify all parallel loads
and stores in each basic block of the input code.
To describe this task, we first define two types of
regions in Definitions 1 and 2, where given a block
B with size |Bl, we assume the cycles in B count
from 0 up to |B}-1.

DEFINITION 1. Suppose B contains a load r = v
at the cycle t that loads the value into the register
r from the memory location denoted by the variable
v. Then, the Loadable region (L-region) of the load
is the time interval int, = [Ib,ub] where its lower/
upper bounds /b and ub are defined as follows.

«If there occurs the last store into v at some
cycle t' in B before the load, then int./b = ¢'+1.
Otherwise, int.lb = 0.

*If the value loaded at t is first used at some
cycle t' in B, then int,ub = t
intwub = |BI-1.

DEFINITION 2. Suppose B contains a store v =
r at the cycle t that stores the value from the

”

Otherwise,

register r into the memory location denoted by the

variable v. Then, the Storable region (S-region) of

the store is the time interval int, = [lb,ub] where
its lower/upper bounds b and ub are defined as
follows.

«If the register value stored at t was last defined
at the cycle t' in B, then intu,./b = t'+1.
Otherwise, inte./b = 0.

« If there is the first load from v at the cycle t”
in B after the store, then inty.ub = ¢t .

g &8 A 328 A 830068

baild PLS(P):
Gprg ¢+ O. // PLS graph
for each basic block B in P do
R}, + campute L_regions(B); // according to Defmition ]
Rg « compute_S_regions(B), // according to Dafmnition 2
R « Ry U Rg: //aunified set of L/S-regions
while R # § do
select inty, € R such that Vint, € R,inty.ub < inty.ub;
I + {int_v}, / Wacall int, the seed interval of I
ifint, € Ry then /loadable region
add to 7 all the L-regions in R overlapping with int v;
else // storable region
add to 7 all the S-regions in R overlapping with int v;
// check if register pressure > RF_size at tyio
tyio 4~ check RFsize(J, B);
while (8,;o0 > 0)do / RF-size constraint violated
remove inty, from I such that Vint, € I,int,.ub > inty.ub;
intydb ¢ty + 1;
tpio + check RFsize(/, B);
od

// construct a complete graph with all elements of I as its nodes
C +-build_complete_graph(7);
ifint, € Ry then //loadable region
C.gen_time « max int,.lb;
int, €1
C.type + load;
else // storable region
C.gen.time + min inty.ub;
int, €1

C.lype « store;

add CtoGpys:
R«R~-1I;
od
od
retum Gprg;
end

Figure 4 Greedy algorithm designed to find parallel

loads/stores
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cycle  3-address code w/ 4 blocks ab e d
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L goto L1 1if r0 <a rl ; d:
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(B1,B2,B3,Bs) of the 3-
addess code rewritten from Figure 1(c)

Figure 5 4 basis blocks

and the L/S-regions for loads/stores in
each block

Otherwise, inte.ub = |B|-1.
The L- and S-regions. respectively represent the
maximum ranges within B where the load r = v
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and the store v = r can move without violating
data dependences on the variable v. Examples of
the L/S-regions are shown in Figure 5 where the
original ARM code (see Figure 1) is translated into
3~-address form for better readability. The vertical
bars in the figure stand for the L/S-regions of
each load/store. For instance, the load from the
variable d in the basic block B; has the L-region
stretching from the cycle 0 to 6 because by
definition, there is no store before the load in B:
and the value loaded to r2 is first used at the
cycle 6. Similarly, the S-region for the store into
the variable f in the block Bz stretches from the
cycle 5 to 9 since the stored value is defined at the
cycle 4 and there is no load from f in B; after the
store. ’

The routine build_PLS uses the L/S-regions to
For this, it first
divides the input procedure P into basic blocks, and

identify parallel loads/stores.
for each block, computes the L/S-regions R: and
Rs according to Definitions 1 and 2. In principle,
any loads/stores are parallel as long as their
L/S-regions are overlapped. So in build_PLS, these
parallel loads/stores are initially all gathered into
the same block I of parallel loads/stores. However,
this simple gathering may cause many new register
spills in the final code. To explain this with an
example, suppose in Figure 5 that we combine a
load for d in By to the same [ with those for agb
and ¢. Then, when we generate MLS instructions,
we will schedule these four loads into the same
MLS so that by definition they can be executed
simultaneously. This inevitably means that the load
for d should move up from the cycle 5 to 2 or
even earlier. This movement would prolong the life
time of the value in the register r2, possibly
increasing the register pressure as well. This can
be a major drawback for us because we might
have to generate MLSs with extra spills due to the
increased register pressure, and very likely, these
spills would offset the gains from our MLS uses in
terms of code size and running time. To prevent
this potential problem, the subroutine check_RFsize
inside build_PLS enforces the RF-size
constraint when parallel loads/stores are collected to L

When check_RFsize

invoked

reports that the current

configuration of I violates the RF-size constraint,
some L/S-regions (or we may say simply intervals
by their definitions) are removed from I until the
constraint is satisfied. To explain this, consider
Figure 6 where each L-region is extended with a
gray line to represent the whole life span of the
value loaded from a memory location. Assume that
the target machine currently has only four registers
available for loads/stores in this part of code. In
figure 6 (a), the block I of L-regions are first

intervals (intx,inty,intz,intv)’

formed with four
beginning with int, as the seed interval2 However,
under the register file size limit (= 4), moving up
the two loads for v and y to join I before the
cycle 2 would cause the resulting pressure to
violate the RF_size constraint by exceeding the
limit at the cycle 4. When this violation is reported,
build_PLS forbids the load for v to move up before
the cycle 5 by eliminating it from I and adjusting
its lower bound int.lb=5, as shown in Figure 6
(b), where we now can see that the constraint is
no longer violated. Although we could also prevent
the violation by choosing int, instead of int., we
choose the interval with the longest tail since its
life span stretches longest having more chance

overlapping with other intervals.

Xyszsvwau XxXyzvwu

(G Q¢
i constraing IS
2 violaion 2
nt.ub 3 3
4 int.ub &
pH 5 1]
6: 6:
7 7
8 8:
9: 9
10: 10:

(a) int, as the seed interval (b) int,, as the seed mterval

Figure 6 RF-size constraint validity check for regi-
ster pressure=4

intervals

After int, is three

remaining in I will form a block of parallel loads,

removed, the

as shown in Figure 6(b). Then, by definition, the
interval int, will be selected as the next seed, and
clustered with the other two intervals, int, and int..

The output of build_PLS is an undirected graph

2) the interval whose upper bound is the lowest of all in the same
block
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Grprs, called the parallel load/store (PLS) graph,
which is a collection of disconnected subgraphs.
Each subgraph is constructed from a block of
parallel loads/stores by turning an interval in the
block to one node in the subgraph. Figure 7 shows
the PLS graph built from the intervals in Figure 5.
Each subgraph forms a complete graph because the
edge is designed to represent the parallelism
between two loads in the code and parallelism is

an equivalence relation.

d

b a

VY,

I =8
gen_tim.
e -

B, &m.time=0 g gen_time=1 gentime=9 B,
B: a t a a t a B
gen_time=2  gen_time=§ gen_time=0 gen_time=5

Figu;e 7 The PLS graph built from the code in
Figure 5! Each node v in the graph re-
presents the interval of a load/store for
variable v.

Later in Section 34, we will see that each
subgraph in the PLS graph is given the code
generator to emit MLS instructions in the final
code. When an instruction is emitted, the generator
needs to know where in the code it must be
scheduled. To

subgraph is associated with an integer gen_time

supply this information, every
that records the time just before which an MLS
instruction for the subgraph is inserted in the code.
To minimize pipeline hazards, gen_time is set as
early as possible to schedule loads and as late as
These
denoted by the horizontal white bars in Figures 5
and 6.

When we build a PLS graph in the routine

possible to schedule stores. times are

build_PLS, we follow a greedy approach by choo-
sing as a seed interval an interval with the lowest
upper bound among all remaining ones. The
in the PLS
graph is proportional to that of loads/stores emitted
This

subgraphs we produce in build_PLS, the more

number of disconnected subgraphs

in the final code. means that the less

likely we will have an optimal code in the end.

Luckily, the following theorem proves that our

A2ZEdO I 28 A 32 # A 8 (2058

greedy approach reaches an optimal solution.
THEOREM 1. Given a set of loads/stores in the
basic block B, the routine build_PLS finds the
minimum number of parallel loads and stores for B.
PROOF: The proof is straightforward. Suppose
build_PLS produces k blocks of parallel loads/
stores. Let S be the set of all seed intervals. The
seed intervals are all disjoint since otherwise some
of them would be included in the same block of
parallel loads/stores. Since |S|=k, k is the minimum
number of parallel loads/stores. |
3.3 Memory Assignment
In Phase 1, we imposed the RF-size constraint
on the initial parallel load/store blocks when we
summarized them as the disconnected subgraphs in
a PLS graph. The task of Phase 2 is to impose the
M-sequence constraint on them in an attempt to
find an optimal memory layout for variables that
can minimize the number of loads/stores emitted in

the final code, as depicted in Figure 8.

solve MAM(P, Gp 1)
Gy pLs + buid wPLSG(GpLs); /according o Defnition 5
mwp « solve SOA(Gy,pLs)
# Maximum-weight path algorithm from {1]
Epnp ¢ get non.path.edges(Gw. p LS, WD),
for all complete graphs C = (Vo, E¢) € Gprg do
if u,v) € Epnp such that (inty,int, ) € Cthen
remove (inty,int, ) from Ec;
od
© forevery variable v € Pdo
v.0f fsel + assign offsets_in_memory(v, mwp);
retum Gprg: #return PLS graph as mPLS graph
end

Figure 8 Phase 2 algorithm to solve the MAM
problem

In principle, we can simultaneously run any
parallel loads/stores in the same block by emitting
them in one MLS instruction. However, the M-
sequence constraint tells us that the memory
locations accessed in an MLS should be contiguous.
This means that if parallel loads/stores are refe-
rencing variables with non-contiguous memory
offsets, they should be scheduled to more than one
different MLS

result in an increase in code size. So, the ultimate

instructions, which will certainly
problem we need to solve in Phase 2 is how to
find such memory offsets for variables that satisfy
the M-sequence constraint and at the same time,

minimize the number of parallel loads/stores that
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must be scheduled to different MLS instructions.
For clarity, this problem, which we call the
memory assignment for MLS (MAM), can be
stated more formally below.

DEFINITION 3. Given a set of local variables S,
let [v] denote a memory offset of vES in a local
stack. We define < to denote a relation between u
and v in S such that u<v iff u immediately
precedes v in the stack, that is, [vl = [ul + 4.
we define a reflexive

From the relation <,

transitive closure <" on S as follows:

.WveS:v<v;

NVuveS:IweS: uzrvu<w
and W= Vit U< v

DEFINITION 4. Given a PLS graph Gers= (V,E),
let U be a set of all possible partitions ¥ of N
such that V¥ € ¥, the block ¥ satisfies the follo-

wing conditions:

L Vint,int, ey :(int,,int)) € E;
o, Vint,,int, ey sy v<u
or U '<* vV,

Then, the MAM 1is a problem that finds a

partition ¥ € U such that VoeU,|Y¥ |S| @ | .

The first condition in Definition 4 implies that a
partition W consists of disjoint subsets of N each of
which

loads/stores summarized in Gprs. On such a par-

corresponds to a block of the parallel
tition ¥, the second condition imposes the M-

sequence constraint. Since the possible number of

all partitions of N is O™ /log| N D111 pound

by an exponential in IN|, it requires an
exponential-time algorithm to optimally solve the
MAM problem, like other

problems listed in Section 2. Considering IN! can be

memory assignment

several orders of 10 in real code, therefore, we
devise a heuristic that solves the problem fast in
polynomial time. To attain this goal, we first
transform the MAM problem to an MWPC problem
even though the MWPC problem is NP-complete.
This is because as discussed in Section 2, the

MWPC problem 1is already well-understood and

solved with many powerful algorithms thanks to
numerous previous studies. For this transformation,
we build a weighted graph, called the wPLS graph,
as described in Definition 5. .
DEFINITION 5. Let V be the set of all variables
declared in a procedure P. Let Grpis = (N',E') be
the PLS graph built for P by the routine
build_PLS. Then, the wPLS graph Gupis = (N, E)

is defined as follows.
N=V
.de=(u,v)eE y I(int,,int,) e E.

«For €=(u,v) e E,eweight, e weight e, is
the total number of edge € €E such that
e =(int,,int,).
Figure 9(a) shows the wPLS graph generated
from the PLS graph in Figure 7. The weight on an
edge (u, v) equals to the number of times the

variables u and v can be either loaded or stored in
parallel.

a ———h
><
3
B T - L Lo 1
1
3,
\
\ / \ /
\,
5

% AS——

19
[ P——

- e h N {b) Maximum-weight path in solid
(a) wPLS built from Figure 7 lines and non-paths in dotted lines
Figure 9 wMPLS graph and the maximum-weight

path on it

After a wPLS graph being constructed, the MAM
problem in effect reduces to a simpler, yet still
exponential-time MWPC problem. To efficiently
solve this problem, therefore, we resort to a widely-
known heuristic based on an MST algorithm that
has also been used to solve the SOA problem [1].

Figure 9(b) shows the resulting maximum-weight
path  (MWP) this heuristic-based
algorithm. The MWP is constituted by a set of
edges in thick solid lines, and all the other edges
in dotted
non-paths (= E,, in Figure 8). The rationale for

computed by

lines form what we call a set of

this use of a MST-based heuristic relies on our

speculation that assigning contiguous addresses to
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the wvariables that can be more often accessed
together is more. likely to increase the chance
better utilizing MLS instructions, thus reducing the
overall cost of memory accesses.

The resultant MWP is now used to determine
the offsets of variables in memory as shown in
Figure 10(a). It is also used to measure the total
number of memory operations required for this
program by removing the non-path edges of the
wPLS graph from the original PLS graph. We
abbreviate this modified PLS graph as an mPLS
graph. Figure 10(b) shows that after non-paths are
removed, the mPLS graph is no longer a collection
of complete graphs, but instead that of connected
components. In most cases, the number of those
components will become the number of required
memory operations in the final code. From Figure
10(b),
probably need eight load/store instructions in total,

we can estimate that the program will

including both single and multiple loads/stores.

@ ===~ 0x04

! L S 4 a——b ]

===+ 0x08 a

' gen_time=3

a ~-=% 0x0c < 4 d hd
gen_ttme~s gen_time=1 gen_time=9

=== 0xio
£ w==* 0xi4 g £ a—34d £ —
fime=2  gen_fime=6 en_time=0 en_fime=5
© ———= 0x18 gem_ gen_ gen_

(a) Offset assign-
nients in memory

(b) mPLS graph with eight components each
converting 10 a load/store instruction in the code

Figure 10 Momery offset assignment for local
variables and the modified PLS graph
both determine according to the MWP
in Figure 9

Although in this example the number of con-
nected graphs does not increase when we modify
the PLS graph, in reality we have seen several
cases where it actually does. This is of course in
part because our heuristic cannot always find an
optimal solution. For instance, suppose our algo-
rithm finds the path c-b-a-d-e-f as the result
instead of the optimal path c-b-a-d-f-e. Then, the
complete graph f-d in Figure 7 would be split into
two separate graphs f and d since the edge (f, d)
belongs to the non-paths of the wPLS graph. This
would result in 10 connected components in the
mPLS graph, producing more loads/stores in the

code.

3.4 Register Assignment

Every connected component in the mPLS graph
corresponds to a block of parallel loads/stores
accessing contiguous memory locations starting at
their base offset mease from the stack pointer. Since
the M-sequence constraint is now satisfied, each
component with k nodes can be converted to a

sequence of code either for a multiple load

rbase = Sp +# m base

{7, 7ry5es ¥y = Mem(r,, . ].
or for a multiple store

rbase =Sp +# mbase

Mem[r,, 1 =1{1,1ys 1, }

Of course, if the component has only one node,
as in the cases of a and f in Figure 10(b), then it
will be converted to an ordinary single load/store.

As displayed in the algorithm of Figure 11, this
whole conversion process is completed in Phase 3
after a valid order of the registers referenced in
each MLS instruction is determined by enforcing
the R-sequence constraint. The definition of the
R-sequence constraint in Section 3.1 can be divided
in two parts.

1. All register operands in an MLS instruction
must be distinct.

2. The memory words are transferred from/to the
registers in an increasing order of the register
numbers.

Given a connected component with k nodes, the
first part of the constraint implies that at least k
registers must be available for the MLS instruction.
the first MLS
instruction generated for the four loads from the

For instance, in Figure 2(c),
variables a, b, ¢ and d requires four registers. But
as can be seen from the original code in Figure 1
(b), ¢ and d were assigned to the same register r2.
Therefore, when we generate an MLS for them, we
need to allocate one more register (r3 in this case).

Fortunately, the first part of the R-sequence
constraint is trivially met in Phase 3 since the
RF-size

pressure always stays within the register file size.

constraint ensures that the register

So, as long as we handle load instructions, we will
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always find as many registers as we need to
generate them. To the contrary, when we handle
store instructions, we may not find, although not
common in practice for several reasons, an enough
number of registers that we need to generate them
because we need one more register as the base
register rsse for each multiple store. In case none
is available for the base register, we generate an
extra store for one of the registers included in the
original multiple store, as shown in Figure 1L
Then,
provided as the base register for the rest of the

this register becomes free and can be

registers. In the case of a multiple load, we can
avoid this additional work by arbitrarily designating
the base register to be the one from the registers

already allocated for the load.

emit MLSs(P, G pLs)
for each connected component C € Gprs do
Bind « O; //set of tuples <r,v>: binding register r 10 variable v
t ¢ C.gen.time: / the cycle just before which an MLS is inserted
k « #of nodes in C: /= #of registers for this MLS instruction
Lyay - alist of variables v such that int, € C;
Lyeg 4 get{ree_vegisters(k). / a list of registers
forall r € Lycg selected in an mcreasing order of their numbers &
all v € Lyar selected in an increasing order of their offsets do
insert <r.v> into Bind,;
if C.type = load then
ifk = | then //generate asingleloadartin P
emit_load(P, t, Bind), #aload:r = ©
else /k > 1: genarate a multiple load ar t in P
Fhase ¢ select_first.reg(Bind); //select 14t register € Bind
Myqse + find baseoffset(Lyqr),
emit_base_register(P, t, Toq s Mpgac): ¥ Thaae =8P #Mbq,e
emit_mload(P, {, Bind), # {x;.ra,--- . }=Mem[Tiasel

else /7 C.type = store
if k == 1 then //generata a single store at t in P
emit_store(P, t, Bind), /Hastore:v = r
else /k > 1: gonerate a multiple store at t in P
if free register available for base register then
Tpase < select_free_reg(); // renurn a free register
Mpaae + find baseoffset{Lyar);
emit_base.register(P, t, *hoocs Mbase ) # Toase =8P+ #Mbgse
emit.mstore(P, t + 1, Bind); /Mem{Xoasel ={E1,--+ I}
else  # make free the I** register vy in Bind
remove <ry.v1> from Bind,
Bind' « {<ri,m1>}; #spill vy to usa it as Tagae
remove vy from Lygr:
emit_store(P, t, Bind'), /astore:v, = 13
Mpg,e ¢ find.baseoffset(Lyar);
emit_base_register(F, t,7;, My, ). 7/ L1=8p+myg,.
emit_mstore(P, t + 1, Bind); /Memirl={ra,- - .x)}
emitJoad(P,t + 2, Bind'). #/reloading: vy = v1
fi
fi
rename_registers.in(P, Bind);

od
eliminate_redundancy_in(P), / CSE and redundancy elimination

end

Figure 11 Phase 3 algorithm for register (re-)assignment

Once an enough number of registers are allocated
for an MLS instruction, the second part of the
these

R-sequence constraint is enforced when

registers are bound to each variable in the
instruction. To explain this, consider the example in
Figure 1(b) the first three

accessing contiguous addresses: 0x10 for ¢, 0x14

where loads are
for b and 0x18 for a. Even if the loads are satis-—
fying all other constraints, the ARM compiler could
not convert them to a multiple load because they
still do not satisfy the R-sequence constraint; that
is, a was assigned to 12, b to rl and ¢ to 0.

Since the first part of the ‘R'sequence constraint
is already satisfied, finding an binding between
variables and registers that satisfies the second
part is straightforward in our algorithm. However,
after a load/store instruction is inserted in the code,
we may need do an extra chore for appropriate
register renaming in the code so as to reflect the
new binding made in the instruction.

4. EXPERIMENT

The effectiveness of our 3-phase algorithm on
the MLS problem has been evaluated with a set of
benchmarks from the DSPStone [12] and Media-
Bench [13] suites. The evaluation was conducted on
an ARM 7 processor in two different experiments.
In the first, our compiler [14, 15] was used to
compare the size of hoth versions of the code
output generated before and after the algorithm is
applied to the compiler. In the second, our
technique was tested with other existing compilers
that have already been targeted to the ARM
processor. In this section, we report our empirical
results.

4.1 Comparison between Before and After

In the first

versions of the ARM assembly code from a set of

experiment, we generated two
DSPstone benchmarks. The first version was gene-
rated mostly by using single load/store instruc—
tions, with the exception of procedure boundaries
where MLS instructions were limitedly used to
save a few status registers. The second was
generated after applying our algorithm to the first
version. Figure 12 compares the code size of the
two versions, each respectively denoted by Before
and After in the legends. For each benchmark, the
upper bar stands for the code size of the first
version, and the lower for that of the second one.
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Figure 12 ARM code size before and after our
technique is applied

Each bar is halved in two sections. The dark
section represents ALU operations, and the light
section represents memory operations (i.e., loads/
stores).

The amount of code size reduction gained from
our MLS generation ranges from 1% to 23%. On
average, the overall code size reduction rate is
roughly 10%. In the figure, we see that there is a
slight increase in the number of ALU instructions
for every program. This is certainly because base
registers should be initialized before MLS instruc-
tions.

For a couple of reasons, we argued in Section 3
that the performance gain with a reduction of
loads/stores often outweighs the performance loss
with an equal amount of the increase of integer
adds for base register initialization. To support this
argument, in Figure 13, we single out the effect of
load/store reduction and evince the performance
benefits we achieve in memory accesses. In the
figure, the vertical dashed line denotes the original
number of loads/stores in the first version, nor-
malized to one. The horizontal bar represents a
in the

second version against those in the first version.

reduced code size ratio of loads/stores
This performance figures reveal to us that the
average reduction ratio is approximately 309, and
thus prove that given a set of loads/stores, our
technique can reduce the number of loads/stores
substantially.

Often many embedded system designers are only
allowed limited storage space for their hardware

o_real_updates

ims

u_complex_updates

=7

startup

biquad_a_section

#of mfgim-i lolstore

fir2dim

matrixl

dot_product

canvolution

f¢_bit_reduct

e3sT ase T [Ty 10
, ratic
# of loads/stores € 2" version

Figure 13 Ratio =
g # of loads/stores € 1% version

n_real_updates B

startup

biquad_n_section

fir2dim

matrixi

dot_product [
convolution P8

11¢_bit_reduct

'y 16b 240 320 4o

tnstruction count

Figure 14 Code size reduction on a modified ARM
with 8 registers

due to stringent resource constraints. Thus, we
investigate the effectiveness of our technique on an
architecture with a less number of registers than
the original ARM processor. For this experiment,
retargeted to the same ARM
architecture but with the register file size reduced

the compiler is

by half, that is, 8 registers in total. Figure 14
compares the code size of the two versions on this
new target machine.

As can be expected, the reduced file size

increases register spills, producing more loads/
stores in the code. However, except for the code
startup, the code size has been just slightly

increased for all the others. So, for these codes, we
achieve almost identical code size reduction ratios
in Figure 14 as we did in Figure 12.

One interesting code we concentrate on here is
have about twice

startup where we more

loads/stores due to new spills generated after the
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register file size is reduced. Notice in Figure 14
that our technique does not perform better even
with these more loads/stores in the code. According
to our hand analysis, the major reason is that
algorithms  [16]

generate spills without considering its effect on

traditional  register allocation
MLS operations. This analysis provides us with an
insight that the register allocator may reduce spill
costs if it is able to identify a set of the registers
to spill which will be more likely spilled and
reloaded together with a single MLS operation. As
our future study, we are currently working on this
issue to improve our register allocator for the MLS
instructions.

4.2 Evaluation on Existing Compilers

More recently, we conducted another experiment
where we evaluated our technique in comparison
with two existing compilers:
sthe GNU C Compiler (GCC) 3.3, a public domain

compiler ported to the ARM processor [17]

«a production-quality ARM native compiler from

the ARM Developer Suite (ADS) 1.2 [18]

In general, it is difficult, often impossible, to
make a fair comparison between two different
compilers and pinpoint the precise effect of a single
technique on each one because a compiler usually
has its own unique infrastructure with a different
mixture of compilation techniques. Therefore, ins-
tead of directly comparing our compiler with others,
we applied our technique to the assembly output of
each compiler and optimized it with MLS instruc-
tions. Then, we measured the amount of code size
Table 1 lists the
measurement results for individual procedures taken
from the JPEC, MPEG2 and RASTA packages in
the MediaBench suite. The numbers in the table

reduction in each compiler.

are the instruction counts for each benchmark.
They are measured in three categories. Firstly, the
total instruction count is measured. Then, the
number of memory instructions in the code is
measured. Lastly, the MLS instructions among the
memory instructions are counted.

The benchmark code is compiled with the full
optimization level of each compiler so that we can
allow them to maximize the chance of applying all
their optimization techniques for code size reduction
before the code is further reduced by our technique.
these full
experiment reveals us that both the compilers fail

Even with optimization levels, our
to fully exploit MLS instructions for reduction of
code size. Due to lack of a powerful technique for
the MLS problem, the compilers only use them
mainly for restricted purposes.

Table 1(a) exhibits that on average our technique
discovers about five times more MLS operations
from the code than the GCC compiler. According to
our hand analysis, our polynomial-time algorithm
arTives at the solutions very close to optimal in all
cases. This efficiency of our algorithm helps us to
reduce the number of loads/stores by 28% on
In all, despite the addition of ALU

operations for base register initialization, we achi-

average.

eve almost 6% of the average reduction ratio for
the total code size.

We achieve slightly worse performance with the
ADS compiler than we do with the GCC compiler.
This is apparently because the ADS compiler is
commercialized to produce higher—-quality code. So
in Table 1(b), we see that our technique identifies
only about three times more MLS operations than
the ADS compiler. As a result, we reduce the
number of loads/stores by 17%, a little more than a

benchimark full optimization our technique added benchmark full optimizati our technique added
code total | memory | MLS || total | memory | MLS code total | memory | MLS || tofal | memory | MLS
fullsearch 189 74 9 180 51 23 full h 176 58 5 172 45 14
dpfield_estimate 134 57 3 126 40 12 dpfietd_estimate 127 37 8 125 33 10
ford2 238 104 2 230 75 23 ford2 145 96 3 138 82 10
pass2_fs_dither 200 117 4 181 83 19 pass2_fs_dither 184 107 2 172 83 14
quantize.fs.dither | 136 76 3 128 58 13 quantize.fs.dither | 106 51 2 101 44 5
field_estimate 308 176 13 291 127 48 field_estimate 265 120 20 259 101 33

{a) Code size reduction with the GCC compiler

(b) Code size reduction with the ADS compiler

Table 1 Reduction of instruction counts when our technique is applied to the GCC and ADS compilers,

respectively
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half of the percentage we achieve with the GCC
compiler. Overall, we achieve approximately 4%
ratio of the total code size reduction on average.

exploiting MLS

does not lead to a dramatic decrease in the total

Not surprisingly, instructions

code size. However, considering that we suc—
cessfully further reduce the code size even after
every effort was already made by both compilers
for code optimizations, we believe these results are
of some meaning. Besides, although we did not
present empirical evidence in this paper, we also
believe that several tenfold percent (about 10 to
30%) reduction in loads and stores would bring
about .a tangible reduction in running time and
energy consumption®, which are also equally im-
portant performance metrics in embedded pro-

Cessors.

5. CONCLUSION & FUTURE STUDY

The work reported here has been motivated by

our on-going project to build an optimizing
compiler for a commercial media processor under
development. In the processor, we found a variety
of instructions specifically designed to accelerate
media applications, and among them there were
MLS instructions. In our efforts to optimize the
code with these instructions, we found that no
previous compilers had addressed this optimization
problem seriously before. For this reason, we opted
for pursuing our research to devise a cost-effective
algorithm that tackles this exponential-time problem
fast and efficiently.

In this paper, we analyze that the MLS problem
is an enormously complex problem tangled with
several NP-complete subproblems. We, therefore,
circumvent this complexity by applying heuristics.
That is, we first divide the original problem in
three subproblems each defined by a constraint, and
then enforce the constraints one-by-one in three
different phases. Since each phase is implemented
by a polynomial time algorithm, the overall
complexity of our algorithm still remains polynomial

in the number of input loads/stores.

3) Many studies indicate that energy consumption as well as
running time is more dominated by memory operations than
ALU operations [19, 20).
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Our heuristic-based algorithm does not always
guarantee an optimal solution to the MLS problem.

However, we demonstrated through experiments

that it exploits MLS instructions effectively to
further reduce the size of code even after the code
is fully optimized by existing production-quality
compilers. Although our technique cannot reduce
the total code size on a dramatic scale, it has been
proven to be effective to some extent for most
cases after all.

There are still remaining several research topics
for our future study. For instance, in Figure 14, we
explained the importance of register spill decision
on our technique. We are currently developing a
new register allocation. algorithm that can minimize
spill costs by carefully selecting the registers to
spill so that MLS operations can be maximally
utilized in the memory accesses for spill and

reloading.
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