References
- Bandivadekar, K. R. and V. V. Deshpande. 1996. Structurefunction relationship of xylanase: fluorimetric analysis of the tryptophan environment. Biochem. J. 315, 583-587
- Biely, P. 1985. Microbial xylanolytic systems. Trends Biotechnol. 3, 286-290 https://doi.org/10.1016/0167-7799(85)90004-6
- Blanke, S. R. and L. P. Hager. 1990. Chemical modification of chloroperoxidase with diethylpyrocarbonate. Evidence for the presence of an essential histidine residue. J. Bioi. Chem. 265, 12454-12461
- Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
- Church, F. C., R. L. Lundblad and C. M. Noyes. 1985. Modification of histidines on human prothrombin. Effect on the interaction of fibrinogen with thrombin from diethyl pyrocarbonate-modified prothrombin. J. biol. Chem. 260, 4936-4940
- Coughlan, M. P. and G. P. Hazelwood. 1993. Beta-1,4-Dxylan degrading enzyme systems: Biochemistry, molecular biology and applications. Biotechnol. Appl. Biochem. 17, 259-289
- Das, N. N., S. C. Das, A K. Sarkar and A K. Mukherjee. 1984. Lignin-xylan ester linkage in mesta fiber (Hibiscus cannabinus). Carbohydr. Res. 129, 197-207 https://doi.org/10.1016/0008-6215(84)85312-4
- Davoodi, J., W. W. Wakarchuk, R. L. Campbell, P. R. Carey and W. K. Surewicz. 1995. Abnormally high pKa of an activesite glutamic acid residue in Bacillus circulans xylanase. The role of electrostatic interactions. Eur. J. Biochem. 232, 839-843
- Khasin, A., I. Alchanati and Y. Shoham. 1993. Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl. Environ. Microbiol. 59, 1725-1730
- Kulkarni, N., A. Shendye and M. Rao. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23, 411-456 https://doi.org/10.1111/j.1574-6976.1999.tb00407.x
- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 https://doi.org/10.1038/227680a0
- McCarthy, A A, D. D. Morris, P. L. Bergquist and E. N. Baker. 2000. Structure of XynB, a highly thermostable beta-1,4-xylanase from Dictyoglomus thermophilum Rt46B.1, at 1.8 A resolution. Acta Crystallogr. D. Biol. Crystallogr. 11, 1367-1375
- Nakamura, S., K. Wakabayashi, R. Nakai, R. Aono and K Horikoshi. 1993. Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. strain 41M-1. Appl. Environ. Microbiol. 59, 2311-2316
- Nath, D. and M. Rao. 1998. Structural and functional role of tryptophan in xylanase from an extremophilic Bacillus: assessment of the active site. Biochem. Biophys. Res. Commun. 249, 207-212 https://doi.org/10.1006/bbrc.1998.9107
- Park, Y. S. 2002. Molecular cloning and analysis of nucleotide sequence of xylanase gene (xynK) from Bacillus pumilus TX703. Korean J. Life Sci. 12, 188-199 https://doi.org/10.5352/JLS.2002.12.2.188
- Park, Y. S., M Y. Kang, H. G. Chang, G. G. Park, J. B. Kang, J. K. Lee and T. K. Oh. 1999. Isolation of xylanase-producing thermo-tolerant Bacillus sp. and its enzyme production. Kor. J. Appl. Microbiol. Biotechnol. 27, 370-377
- Scalbert, A., B. Monities, J. Y. Lallemand, E. Guittet and C. Rolando. 1985. Ether linkage between phenolic acids and lignin franctions from wheat straw. Phytochemistry 24, 1359-1362 https://doi.org/10.1016/S0031-9422(00)81133-4
- Somogyi, M. 1952. Notes on sugar determination. J. Biol. Chem. 195, 19-23
- Takeuchi, M, A. Asano, Y. Kameda and K. Matsui. 1986. Chemical modification by diethylpyrocarbonate of an essential histidien residue in 3-ketovalidoxylamine A C-N lyase. J. Biochem. 99, 1571-1577
- Velikodvorskaya, T. V., I. Y. Volkov, V. T. Vasilevko, V. V. Zverlov and E. S. Piruzian. 1997. Purification and some properties of Thermotoga neapolitana thermostable xylanase B expressed in E. coli cells. Biochemistry 62, 66-70
- Wakarchuk, W. W., R. L. Campbell, W. L. Sung, J. Davoodi and M Yaguchi. 1994. Mutational and crystallographic analyses of the active site residues of the Bacillus circulans xylanase. Protein Sci. 3, 467-475 https://doi.org/10.1002/pro.5560030312
- Wang, K. K. Y., L. U. L. Tan and J. N. Saddler. 1988. Multiplicity of beta-1,4-xylanase in microorganisms: Function and applications. Microbiol. Rev. 52, 305-317
- Wong, K. K. Y. and J. N. Saddler. 1992. Applications of hemicellulases in the food, feed, and pulp and paper industries, pp. 127-143, In Coughlen, P. P. and G. P. Hazlewood (eds), Hemicelolose and Hemicellulases, Portland Press, London
-
Wong, K. K. Y., L. U. L. Tan and J. N. Saddler. 1988. Multiplicity of
$\beta$ -1,4-xylanase in microorganism: Functions and applicaitons. Microbiol. Rev. 52, 305-317 - Xie, H., H. J. Gilbert, S. J. Charnock, G. J. Davies, M. P. Williamson, P. J. Simpson, S. Raghothama, C. M. Fontes, F. M. Dias, L. M. Ferreira and D. N. Bolam. 2001. Clostridium thermocellum Xyn10B carbohydrate-binding module 22-2: the role of conserved amino acids in ligand binding. Biochemistry 40, 9167-9176 https://doi.org/10.1021/bi0106742
- Zhu, H., F. W. Paradis, P. J. Krell, J. P. Phillips and C. W. Forsberg. 1994. Enzymatic specificities and modes of action of the two catalytic domains of the XynC xylanase from Fibrobacter succinogenes 585. J Bacteriol. 176, 3885-3894