DOI QR코드

DOI QR Code

A Study on Removal of T-N by Loess Ball Using Synthetic Wastewater

Loess ball에 의한 총질소 제거에 관한 연구

  • Shin Sung-Euy (Department of Chemical Engineering, Chosun University) ;
  • Lee Choon-Boem (Department of Chemical Engineering, Chosun University) ;
  • Cha Wol-Suk (Department of Chemical Engineering, Chosun University)
  • Published : 2005.08.01

Abstract

In this study, the wastewater treatment was conducted to evaluate the removal efficiency of total nitrogen from synthetic wastewater in the F-STEP PROCESS $(anaerobic{\rightarrow}\;oxic\;{\rightarrow}\;anoxic)$ with loess ball as support metrics. The average removal efficiencies of total nitrogen and ammonia nitrogen were $83.0\%\;and\;84.4\%$, respectively. The average nitrification efficiency at the oxic area was $60.9\%$ in the pH range of effluent water between 4.8 and 6.0. On the other hand, in the case of pH range of effluent water between 6.5 and 7.5, the denitrification efficiency at the anoxic area was $96.3\%$. The average concentration of COD was 12.8 ppm and the removal efficiency of COD in the F-STEP PROCESS were $96.3\%$. In the case of SS, the average concentration was $7.0\%$ at the effluent.

황토볼을 담체로 사용하여 혐기조${\rightarrow}$호기조${\rightarrow}$무산소조의 순서로 진행되는 폐수처리 시스템(F-STOP PROCESS)에서 폐수의 조성이 COD 200, 총질소 40 (ppm)정도의 합성폐수를 처리하여 다음과 같은 결론을 얻었다. 총질소 성분의 평균 제거율은 $83.0\%$이였으며, 암모니아성 질소는 평균 제거율이 $84.4\%$이였다. 또한 질산성 질소는 호기조의 평균 질산화율은 $60.2\%$이였는데 유출수의 pH범위가 $4.8\~6.0$인 것을 고려하면 양호한 결과를 보였으며, 무산조의 질산성 질소의 제거율은 $96.3\%$으로 상당히 좋은 결과를 보이고 있다. 최종 방류조의 유출수 COD는 12.8ppm으로 평균 제거율 $93.6\%$이였으며, SS의 경우에는 평균발생량은 7.0ppm이였다. 이러한 결과치는 하수종말처리장(특별대책지역 및 잠실수중보권지역) 기준 및 폐수처리시설(농공단지 오 폐수처리시설 포함) 기준 이내의 기준에 해당하는 영양염류의 수치로 양호한 결과를 보여주었다. 그러나 이러한 결과를 유지하기 위해서는 폐수성상에 따른 시스템 순서의 변경, 비정상상태에서 정상운전에 이르는데 요구되는 시간을 줄이는 것 등이 관건으로 되어 있으며, 향후 이러한 방향으로 보다 연구가 진행되어야할 필요성이 있다.

Keywords

References

  1. Tchobanoglous, G. and F. L. Burton.1991. Wastewater engineering (Treatment, Disposal, and Reuse), pp. 19-28, 3rd ed., McGraw-Hill Inc, Singapore
  2. Hegemann, W. 1984. A Combination of The activated sludge process with fixed film biomass to Increase the capacity of wastewater treatment plants. Wat. Sci. Tech., 16, 119-130
  3. Kim, D. Y. and H. J. Woo.1990. Comparison on efficiency of phenol removal according to various RBC disc materials. J. KSEE. 12(2), 81-89
  4. Lee, S. K., Y. J. Cho, M. H. Lee, and J. O.Han. 1995. A study on biological wastewater treatment using fibrous media. J. KSEE, 17(1), 53-63
  5. Kim, J. T., K. H. Moon, and J. W. Kim. 2001. Legal testing methods of water pollution. pp. 37-41, Shin kwang press, Seoul
  6. Chang, D. and T. H. Chang. 1988. Kinetic of anaerobic digestion. J. KSCE, 8(4), 59-67
  7. Kim, C. O., M. S. Park, J. S. Park, S. H. Lee, and C. S. Hyun. 1998. Environmental microbiology. pp. 38-45. Hyungseul press, Seoul, 326-330
  8. Lee, K. H., J. H. Lee. S. L. Song. and T. J.Park. 1997. Characteristics of nitrification from wastewater treatment using a combined fixed film reactor process. J. KSEE, 19(12), 1509-1522
  9. Wang, L. and A. Hien, 1996. Determination in soil by the indophenol method. Acta Agric. Scand. 36, 60-70 https://doi.org/10.1080/00015128609435795
  10. Nielsen, P. H. 1996. Adsorption of ammonium to activated sludge. Wat. Res. 30(3), 762-764 https://doi.org/10.1016/0043-1354(95)00222-7
  11. EPA 1993. Manual nitrogen control. EPA, 625
  12. Engel, M. S. and M. Alexander. 1998. Growth and autotrophic metabolism of Nitrosomomas Europe. J. Bacterial. 76, 217
  13. Shammas, N. K. 1986. Interactions of temperature, pH and biomass on the nitrification process. J. WPCF. 58(1), 52-59
  14. Jung, C. C., T. K. Lee, S. E. Lee, and J. S. Song. 1995. Microbiology of wastewater treatment, pp. 338-398, Free academic press, Seoul