Effects of EGF, $\beta-ME$, Glucose, $O_2$ Concentrations and Fibroblasts Subculture on the Development of Porcine NT Embryos

EGF, $\beta-ME$, Glucose, $O_2$ 농도 및 Fibroblast Subculture가 핵이식 배의 체외발생에 미치는 영향에 관한 연구

  • Quan J. H. (College of Veterinary Medicine, Chungnam National University) ;
  • Wang A. G. (College of Veterinary Medicine, Chungnam National University) ;
  • Kim S. K. (College of Veterinary Medicine, Chungnam National University)
  • 전연화 (충남대학교 수의과대학) ;
  • 왕애국 (충남대학교 수의과대학) ;
  • 김상근 (충남대학교 수의과대학)
  • Published : 2005.08.01

Abstract

본 연구는 NCSU-23과 PZM-3 배양액에 EGF, $\beta-ME$와 glucose의 첨가가 돼지 난자의 체외성숙에 미치는 영향과 배양조건을 다르게 하여 계대배양한 섬유아세포를 이용한 핵이식배를 다른 배양액과 산소조건에서 배양하였을 때 체외발생율에 미치는 영향을 조사하였다. 핵이식 배를 20ng/ml EGF를 첨가 또는 첨가하지 않은 NCSU-23 및 PZM-3 배양액에서 배양하였을 때 배반포로의 체외 발생율은 각각 $12.0\pm1.3\%,\;9.6\pm1.9\%,\;10.9\pm2.1\%,\;9.1\pm2.3\%$였다. 핵이식 배를 $25{\mu}M\;\beta-ME$를 첨가 또는 첨가하지 않은 NCSU-23 및 PZM-3 배양액에서 144시간 배양하였을 때 배반포로의 체외 발생율은 각각 $9.6\pm1.7\%,\;7.3\pm2.3\%,\;11.9\pm1.8\%$$7.4\pm2.1\%$였다. $\beta-ME$를 첨가한 PZM-3 배양액에서 배양하였을 때 배반포로의 체외 발생율은 $\beta-ME$를 첨가하지 않은 배양액에서 배양한 배보다 높은 체외발생율을 나타냈다. (p<0.05). 핵이식 배를 1.5mM glucose를 첨가 또는 첨가하지 않은 NCSU-23 및 PZM-3 배양액에서 배양하였을 때 배반포로의 체외 발생율은 각각 $9.4\pm2.2\%,\;6.8\pm2.7\%,\;10.9\pm2.4\%$$8.9\pm2.6\%$였다. Glucose를 첨가한 NCSU-23과 PZM-3 배양액에서 배양하였을 때 배반포로의 체외 발생율은 glucose를 첨가하지 않은 배양액에서 배양한 배보다 높은 체외 발생율을 나타냈다. 핵이식 배를 NCSU-23 및 PZM-3 배양액과 $5\%$$20\%$ 산소 조건에서 배양하였을 때 배반포로의 체외 발생율은 각각 $11.1\pm1.8\%,\;9.8\pm1.4\%,\;12.5\pm1.6\%$$10.9\pml.5\%$였다. NUSU-23과 PZM-3 배양액에서 $5\%$ 산소 조건에서 배양하였을 때 $20\%$산소 조건에서 배양한 난자보다 높은 체외 발생율을 나타났다. 섬유아세포를 NCSU-23 배양액에서 배양하여 공여자세포로 이용하여 10 및 $11\~15\;passage$ 이내로 계대배양하였을 때의 융합율은 $60.0\~73.3\%,\;52.5\%$였다. 섬유아세포를 PZM-3 배양액에서 배양하여 공여자세포로 이용하여 10 및 $11\~15passage$ 이내의 계대배양시의 융합율은 $60.4\~75.1\%$$58.7\%$였다.

Keywords

References

  1. Abeydeera LR, Wang WH, Cantley TC, Prather RS and Day BN. 1998. Presence of ${\beta}$-mercaptoethanol can increase the glutathione content of pig oocytes matured in vitro and the rate of blastocyst development after in vitro fertilization. Theriogenology, 50:747-756 https://doi.org/10.1016/S0093-691X(98)00180-0
  2. Baguisi A, Behboodi E, Melican DT, Pollock JS, Destrempes MM, Cammuso C, Williams JL, Nims SD, Porter CA, Midura P, Palacios MJ, Ayres SL, Denniston RS, Hayes ML, Ziomek CA, Meade HM, Godke RA, Gavin WG, Overstrom EW and Echelard Y. 1999. Production of goats by somatic cell nuclear transfer. Nat. Biotechnol., 17:456-461 https://doi.org/10.1038/8632
  3. Bavister RL and Troike DE. 1979. Requirements for blastocyst development in vitro. J. Anim. Sci., 49:26-34
  4. Berthelot F and Terqui M. 1996: Effects of oxygen, $CO_2/pH$ and medium on the in vitro development of individually cultured porcine one and two-cell embryos. Reprod. Nutr. Dev., 36:241-251 https://doi.org/10.1051/rnd:19960302
  5. Chance B, Sies Hand Boveris A. 1979. Hydroxyperoxide metabolism in mammalian organs. Physiol. Rev., 59:527-605 https://doi.org/10.1152/physrev.1979.59.3.527
  6. Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C, Ponce de Leon FA and Robl JM. 1998. Cloned transgenic produced from nonquiescent fetal fibroblasts. Science, 280:1256-1258 https://doi.org/10.1126/science.280.5367.1256
  7. Davis DL. 1985. Culture and storage of pig embryos: J. Reprod. Fertil., 33:115-124
  8. Ding J and Foxcroft GR. 1993. Epidermal growth factor enhances oocyte maturation in pigs. Mol. Reprod. Dev., 39:30-40 https://doi.org/10.1002/mrd.1080390106
  9. Fischer B and Bavister BD. 1993. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters, and rabbits. J. Reprod. Fertil., 99:673-679 https://doi.org/10.1530/jrf.0.0990673
  10. Grupen CG, Nagashima and Nottle MB. 1997. Role of epidermal growth factor and insulin-like growth factor-Ion porcine oocyte maturation and embryonic development in vitro. Reprod. Fertil. Dev., 9:571-575 https://doi.org/10.1071/R96115
  11. Hayes O, Ramos B, Rodriguez LL, Aguilar A, Badia T and Castro FO. 2005. Cell confluency is as efficient as serum starvation for inducing arrest in the $G_0/G_1$ phase of the cell cycle in granulosa and fibroblast cells of cattle. Anim. Reprod. Sci., In Press https://doi.org/10.1016/j.anireprosci.2004.11.011
  12. Hill R, Winger QA, Long CR, Looney CR, Thompson JA and Westhusin ME. 2000. Development rates of male bovine nuclear transfer embryos derived from adult and fetal cells. Biol. Reprod., 62:1135-1140 https://doi.org/10.1095/biolreprod62.5.1135
  13. Im GS, Lai LX, Liu ZH, Hao YH, Was DA, Randal B, Prather S. 2004. In vitro development of preimplantation porcine nuclear transfer embryos cultured in different media and gas atmospheres. Theriogenology, 61:1125-1135 https://doi.org/10.1016/j.theriogenology.2003.06.006
  14. Johnson MH and Nasr-Esfahani. 1994. Radical solutions and cultural problems: could free oxygen radicals be responsible for the impaired development of preimplantation mammalian embryos in vitro? Bioassays, 16:31-38 https://doi.org/10.1002/bies.950160105
  15. Kato Y, Tani T, Sotomaru Y, Kurokawa K, Kato J, Doguchi H, Yasue H and Tsunoda Y. 1998. Eight calves cloned from somatic cells of a single adult. Science, 282:2095-2098 https://doi.org/10.1126/science.282.5396.2095
  16. Kim MK, Fibrianto YH, Hyun JO, Jang G, Kim HJ, Lee KS, Kang SK, Lee BC, Hammond JM, Hsu CJ, Mondschein JS and Canning SF. 1988. Paracrine and autocrine functions of growth factors in the ovarian follicle. J. Anim. Sci., 66:21-31 https://doi.org/10.2527/jas1988.66121x
  17. Kim MK, Fibrianto YH, Oh HJ, Jang G, Kim HJ, Lee KS, Kang SK, Lee BC, Hwang WS. 2004. Effect of beta-mercaptoethanol or epidermal growth factor supplementation on in vitro maturation of canine oocytes collected from dogs with different stages of the estrus cycle. J. Vet. Sci., 5(3):253-258
  18. Krischer RL, Ghandi DK and Lane M. 2000. Developmentally related changes in nutrient uptake and metabolism by in vitro produced porcine embryos. Theriogenology, 53:274
  19. Kues WA, Anger M, Camwath JW, Paul D, Motlik J and Niemann H. 2000. Cell cycle synchronization of porcine fetal fibroblast: effects of serum deprivation and reversible cell cycle inhibitors. Biol. Reprod., 62:412-419 https://doi.org/10.1095/biolreprod62.2.412
  20. Machaty Z, Day BN and Prather RS. 1998. Development of early porcine embryos in vitro and in vivo. Biol. Reprod., 59:451-455 https://doi.org/10.1095/biolreprod59.2.451
  21. Olson SE and Seidel Jr GE. 2000. Reduced oxygen tension and EDTA improve bovine zygote development in a chemically defined medium. J. Anim. Sci., 78:152-157 https://doi.org/10.2527/2000.781152x
  22. Petters RM, Johnson BH, Reed ML and Archibong AE. 1990. Glucose, glutamine and inorganic phosphate in early development of the pig embryo in vitro. J. Reprod. Fertil., 89(1):269-275 https://doi.org/10.1530/jrf.0.0890269
  23. Polejaeva IA, Chen SH, Vaught TD, Page RL, Mullins J, Ball S, Dai Y, Boone J, Walker S, Ayares DL, Colman A and Campbell KHS. 2000. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature, 407:86-90 https://doi.org/10.1038/35024082
  24. Schnieke AE, Kind AJ, Ritchie W A, Mycock K, Scott AR, Ritchie M, Wilmut I, Colman A and Campbell, KHS. 1997. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science, 278:2130-2133 https://doi.org/10.1126/science.278.5346.2130
  25. Thuan NV, Harayama H, Miyake M. 1996. Characteristics of preimplantational development of porcine parthenogenetic diploids relative to existence of amino acids in vitro. Biol. Reprod., 55:703-708 https://doi.org/10.1095/biolreprod55.3.703
  26. Wakayama T, Perry ACF, Zuccotti M, Johnson KR and Yanagimachi R. 1998. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature, 394:369-374 https://doi.org/10.1038/28615
  27. Wells DN, Misica PM and Tervit HR. 1999. Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells. Biol. Reprod., 60:996-1005 https://doi.org/10.1095/biolreprod60.4.996
  28. Wilmut I, Schnieke AE, McWhir J, Kind AJ and Campbell KHS. 1997. Viable offspring derived from fetal and adult mammalian cells. Nature, 385:810-813 https://doi.org/10.1038/385810a0
  29. Yoshioka K, Suzuki T, Tanaka A, Anas IMK and Iwamura S. 2002. Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. Reprod., 66:112-119 https://doi.org/10.1095/biolreprod66.1.112