초록
칼라 교통 영상열에서의 물체 추출을 위해 우선 MOG(Mixture of Gaussians)에 기반한 배경차이 방법을 이용한다. 추출한 물체에는 그림자가 포함되어 있을 수 있다. 이 그림자로 인해 물체의 정확한 위치를 찾기 힘들고 때에 따라서는 옆의 물체와 붙어 버릴 수도 있다 그림자 제거를 위한 여러 가지 방법이 제안되었다. 기존 연구는 대개 칼라나 텍스쳐 성분이 그림자 밑에 유지되고 있는 것으로 가정하였으며 이 가정이 성립하지 않는 경우에는 어려움이 있다. 본 논문에서는 이 가정이 성립하지 않는 경우에도 견고하게 그림자를 제거하는 방법을 제안하였다. 우선 색정보에 기반하여 그림자 화소 후보를 추출하고 전체 물체 크기에 대한 그림자 화소수의 비율을 계산한다. 비율이 적절하면 그림자 화소 후보를 제거하고, 과도하면 예전 제거 기록을 가지고 있는 history way를 활용하여 그림자를 제거한다. 제안된 방법을 실제 칼라 교통 영상열에 적용하여 좋은 결과를 얻었다.
Object extraction is needed to track objects in color traffic image sequence. To extract objects, we use background differencing method based on MOG(Mixture of Gaussians). In extracted objects, shadows may be included. Due to shadows, we may not find exact location of objects and sometimes we find adjacent objects are glued together. Many methods have been proposed to remove shadows. Conventional methods usually assume that color and texture information are preserved under the shadow. Thus these methods do not work well if these assumptions do not hold. In this paper, we propose a new robust shadow removal method which works well in those situations. First we extract shadow pixel candidates by analysing color information and compute the ratio of shadow pixel candidates over the total number of Pixels. W the ratio is reasonable, we remove shadow candidate Pixels and if not, we use data in history array containing Previous removal records. We applied the method to real color traffic image sequences and obtained good results.