T-upper approximation spaces

Yong Chan Kim and Jung Mi Ko

*Department of Mathematics, Kangnung National University, Gangwondo, Korea

Abstract

We define extensional spaces. Moreover, we investigate the relations among T-upper-approximation spaces, T-quasi-equivalence relations and extensional spaces.

Key Words: T-upper-approximation spaces, T-quasi-equivalence relations, extensional spaces. E-maps, c-maps, A-maps.

1. Introduction

Zadeh[13] introduced the concept of fuzzy equivalence relations. It has a significant concern in various fields.

The rough set concept proposed by Pawlak [10] is a new mathematical approach to imprecision, vagueness and uncertainty. Yao [12,13] investigated algebraic structures of rough sets as upper approximation operators. Dubois and Prade [4,5] introduced fuzzy rough sets as a fuzzy generalization of rough sets.

In this paper, we define extensional spaces. Moreover, we investigate the relations among T-upper-approximation spaces, T-quasi-equivalence relations, extensional spaces.

2. Preliminaries

Definition 2.1 A binary operation $T:[0,1] \times [0,1] \to [0,1]$ is called a t-norm if it satisfies the following conditions: for each $x, y, z \in [0,1]$,

(T1) T(x, y) = T(y, z),

(T2) T(x, T(y, z)) = T(T(x, y), z)

(T3) T(x, 1) = x,

(T4) if $y \le z$, then $T(x, y) \le T(x, z)$.

We denote $T(x, y) = x \odot y$.

Definition 2.2 Let T be a t-norm. A binary operation $\rightarrow: [0,1] \times [0,1] \rightarrow [0,1]$ is called a residual implication on X defined by

$$x \rightarrow y = \bigvee \{z \in [0,1] \mid T(x,z) \le y\}$$

Theorem 2.3 [2] Let ⊙ be a t-norm. Then the following statements are equivalent:

(1) ⊙ is left-continuous;

(2) $x \odot (x \rightarrow y) \le y$ for all $x, y \in [0, 1]$;

(3) $x \le (y \to z)$ iff $x \odot y \le z$ for all $x, y, z \in [0, 1]$;

(4) $(x \rightarrow y) \odot (y \rightarrow z) \le (x \rightarrow z)$ for all $x, y, z \in [0, 1]$.

접수일자: 2005년 6월 15일 완료일자: 2005년 8월 5일 In this paper, we assume that \odot is left continuous.

Definition 2.4.[14] A map $EX \times X \rightarrow [0,1]$ is called a T-quasi-equivalence relation on X if the following properties hold:

(E1) E(x, x) = 1, for each $x \in X$,

(E2) $T(E(x, y), E(y, z)) \le E(x, z)$, for each $x, y, z \in X$. A T-fuzzy quasi-equivalence relation is called a T-equivalence relation on X if it satisfies

(E3) E(x, y) = E(y, x), for each $x, y \in X$.

A T-fuzzy equivalence relation is called a T-equality on X if it satisfies:

(E) if E(x, y) = 1 for each $x, y \in X$, then x = y. Let (X, E_1) and (Y, E_2) be \odot -fuzzy quasiequivalence relations. A function $\phi: X \to Y$ is called E-map if $E_1(x, y) \le E_2(\phi(x), \phi(y))$ for each $(x, y) \in X \times X$.

Remark 2.5 (1) If a t-norm T_1 is weaker than a t-norm T_2 , then a T_2 -fuzzy (quasi-)equivalence E on X is a T_1 -fuzzy (quasi-)equivalence E on X. Thus, \land -fuzzy (quasi-)equivalence E on X is a T-fuzzy (quasi-)equivalence E on X because $T(x,y) \le x \land y$ for every t-norm T.

(2) Let E be a T-fuzzy quasi-equivalence relation on X. Define $E^{-1}(x,y) = E(y,x)$ for all $x,y \in X$. Then E^{-1} is a T-fuzzy quasi-equivalence relation on X.

3. T-upper approximation operators

Definition 3.1 [9] An operator $c[0,1] \xrightarrow{X} [0,1] \xrightarrow{X}$ is called an \odot -upper quasi-approximation operator on X if it satisfies the following conditions:

(C1) $1 \le c(1)$,

(C2) $\bigvee_{z \in X} (c(1_x)(z) \odot c(1_z)(y)) \le c(1_x)(y),$

(C3) $c(\bigvee_{j\in I}\mu_j) = \bigvee_{j\in I}c(\mu_j),$

(C4) $c(a \odot \mu) = a \odot c(\mu)$ where a(x) = a.

The pair (X, c) is an \bigcirc -upper quasi-approximation space.

An operator c is called an \odot -upper approximation operator on X if it satisfies:

(C)
$$c(1_x)(y) = c(1_y)(x)$$
,

Let (X, c_1) and (Y, c_2) be \bigcirc -upper quasi approximation spaces. A function $\phi: X \rightarrow Y$ is called a c-map if $\phi(c_1(\mu)) \le c_2(\phi(\mu))$ for each $\mu \in [0, 1]^X$.

Theorem 3.2 Let (X, c) be an \bigcirc -upper quasi-approximation space. Then, for all $\mu \in [0, 1]^X$.

- (1) $1 \underset{x}{\leq} c(1 \underset{x}{)}$, for all $x \in X$ iff $\mu \leq c(\mu)$,
- (2) it satisfies (C2) iff $c(c(\mu)) = c(\mu)$.

Proof.(1) Since $\mu(x) = \bigvee_{z \in X} (\mu(z) \odot 1_z)(x)$, then

$$c(\mu)(x) = c(\bigvee_{z \in X} (\mu(z) \odot 1_{z})(x)))$$

$$= \bigvee_{z \in X} (\mu(z) \odot c(1_{z})(x)).$$

$$\geq \bigvee_{z \in X} (\mu(z) \odot \bigvee_{y \in X} (c(1_{z})(y) \odot c(1_{y})(x)).$$

$$= \bigvee_{z \in X} \bigvee_{y \in X} (\mu(z) \odot (c(1_{z})(y) \odot c(1_{y})(x))).$$

$$= \bigvee_{y \in X} \bigvee_{z \in X} (\mu(z) \odot c(1_{z})(y)) \odot c(1_{y})(x))).$$

$$= \bigvee_{y \in X} (\bigvee_{z \in X} (\mu(z) \odot c(1_{z})(y)) \odot c(1_{y})(x))).$$

$$= \bigvee_{y \in X} (c(\mu)(y) \odot c(1_{y})(x)).$$

$$= c(c(\mu))(x).$$

Theorem 3.3 Let (X, E) be an \odot -quasi-equivalence relation space. Define $c_E[0,1] \xrightarrow{X} [0,1]^X$ as follows:

$$c_E(\mu)(x) = \bigvee_{z \in X} (\mu(z) \odot E(z, x))$$

Then c_E is an \odot -upper quasi-approximation operator on X.

Proof (C2)

$$\bigvee_{z \in X} (c(1_x)(z) \odot c(1_z)(y))$$

$$=\bigvee_{z\in X}\{(\bigvee_{w\in X}(1_x(w)\odot E(w,z)))\odot(\bigvee_{p\in X}(1_z(p)\odot E(p,y)))\}$$

$$=\bigvee_{z\in X}(E(x,z)\odot E(z,y))$$

$$\leq E(x, y) = \bigvee_{z \in X} (1_x(z) \odot E(z, y))$$

 $= c(1_x)(z).$

Other cases are easily proved.

Corollary 3.4. Let (X, E) be an \odot -quasi equivalence relation space. Define $c_{E^{-1}}[0,1]^{X} \longrightarrow [0,1]^{X}$ as

$$c_{E^{-1}}(\mu)(x) = \bigvee_{z \in X} (\mu(z) \odot E(x, z))$$

Then $c_{E^{-1}}$ is an \odot -upper quasi-approximation operator on X.

Definition 3.5 [3] Let E be a quasi-equivalence relation on X. A fuzzy set $\mu \in I^X$ is called:

(1) left-extensional with respect to E on X if $\mu(x) \odot E(x, y) \le \mu(y)$ for all $x, y \in [0, 1]$. A fuzzy

set $\overline{\mu} \in I^X$ is called the left-extensional hull defined as

 $\mu = \bigwedge \{ \rho \mid \mu \leq \rho, \ \rho \text{ is left-extensional w,r.t. } E \}$ (2) right-extensional with respect to E on X if $\mu(y) \odot E(x,y) \leq \mu(x)$ for all $x,y \in [0,1]$. A fuzzy set $\mu^{-1} \in I^X$ is called the right-extensional hull defined as

 $\overline{\mu^{-1}} = \bigwedge \{ \rho \mid \mu \le \rho, \ \rho \text{ right-extensional w,r.t } E \}$

Example 3.6 Let $X = \{x, y, z\}$ be a set and $x \odot y = (x+y-1) \lor 0$ and $x \rightarrow y = (1-x+y) \land 1$

for all $x, y \in [0,1]$. Define an \bigcirc -fuzzy quasi-equivalence relation E on X as follows:

$$E(x, x) = E(y, y) = E(z, z) = 1, E(x, y) = 0.8, E(y, x) = 0.7,$$

$$E(x, z) = 0.6, E(y, z) = 0.7, E(z, y) = 0.9, E(z, x) = 0.7$$
For $\mu(x) = 0.7, \mu(y) = 0.1, \mu(z) = 0.3,$

$$0.5 = \mu(x) \odot E(x, y) > \mu(y) = 0.1$$

So, μ is not left-extensional with respect to E

Definition 3.7 A subset Ω of $[0,1]^X$ is called an it extensional system on X if it satisfies: for each $\{\mu_i\}_{i\in I}\subset \Omega, \mu\in \Omega$

- (A1) $\bigvee \mu_i \in \Omega$.
- (A2) $\wedge \mu_i \in \Omega$,
- (A3) $a \odot \mu \in \Omega$,
- (A4) $(a \rightarrow \mu) \in \Omega$.

The pair (X, Ω) is called an extensional space. Let Ω_1 and Ω_2 be extensional systems on X.

The triple $(X, \mathcal{Q}_1, \mathcal{Q}_2)$ is a called bi-extensional space.

Let (X, Ω_1) and (Y, Ω_2) be extensional spaces.

A function $\phi X \rightarrow Y$ is called an A-map if $\phi^{-1}(\mu) \in \Omega_1$ for each $\mu \in \Omega_2$.

Theorem 3.8 Let E be an \bigcirc -quasi-equivalence relation on X and let $\mu \in [0,1]^X$. Then

- $(1) \quad \overline{\mu}(x) = c_E(\mu)(x) = \bigvee_{x} (\mu(z) \odot E(z, x))$
- (2) $\overline{\mu}$ is left-extensional w.r.t E
- (3) $\overline{\mu} = \overline{\mu}$.
- (4) If $\mu = \mu$, then $a \rightarrow \mu = a \rightarrow \mu$, $a \odot \mu = a \odot \mu$.
- (5) μ is left-extensional w.r.t E iff $E(x, y) \le \mu(x) \rightarrow \mu(y)$.

$$\begin{aligned} \mathbf{Proof} \ &(1) \quad c_E(\mu) \ \text{is extensional w.r.t.} \quad E \ \text{because} \\ &c_E(\mu)(x) \odot E(x,y) \ = (\bigvee_{z \in X} (\mu(z) \odot E(z,x))) \odot E(x,y) \\ &= \bigvee_{z \in X} (\mu(z) \odot (E(z,x) \odot E(x,y)) \\ &\leq \bigvee_{z \in X} (\mu(z) \odot (E(z,y)) \\ &= c_E(\mu)(y). \\ &\mu(x) = \mu(x) \odot E(x,x) \leq \bigvee_{z \in X} (\mu(z) \odot E(z,x)) = c_E(\mu)(x) \end{aligned}$$

If $\mu \leq \rho$ and ρ is extensional w.r.t E, then $c_E(\mu) \leq \rho$ because

$$c_{E}(\mu)(x) = \bigvee_{z \in X} (\mu(z) \odot E(z, x)) \leq \bigvee_{z \in X} (\rho(z) \odot E(z, x)) \leq \rho(x)$$

$$(4) \text{ Since } (p \to q) \odot r \leq p \to (q \odot r),$$

$$a \to \dot{\mu}(x) = (\bigvee_{z \in X} ((a \to \mu)(z) \odot E(z, x)))$$

$$\leq (\bigvee_{z \in X} a \to (\mu(z) \odot E(z, x)))$$

$$= a \to (\bigvee_{z \in X} (\mu(z) \odot E(z, x)))$$

$$= a \to \dot{\mu}(x)$$

$$= a \to \mu(x),$$

Other cases are easy.

Corollary 3.9 Let E be an \bigcirc -quasi-equivalence relation on X and let $\mu \in [0,1]^X$. Then

(1)
$$\overline{\mu^{-1}}(x) = c_E(\mu)(x) = \bigvee_{z \in X} (\mu(z) \odot E(x, z))$$

- (2) $\overline{\mu^{-1}}$ is right-extensional w.r.t E
- (3) $\overline{\mu^{-1}}^{-1} = \overline{\mu^{-1}}$.
- (4) If $\mu^{-1} = \mu$, then $a \rightarrow \mu^{-1} = a \rightarrow \mu$, $a \odot \mu^{-1} = a \odot \mu$.
- (5) μ is right-extensional w.r.t E iff $E(x, y) \le \mu(y) \rightarrow \mu(x)$.

Theorem 3.10 Let E be an \bigcirc - quasi-equivalence relation on X and \mathcal{Q}_E denote the collection of fuzzy sets that are left-extensional w.r.t. E. Then

- (1) (X, \mathcal{Q}_E) is an extensional space.
- (2) If E is a equivalence relation on X, then $(\mu \rightarrow a) \in \mathcal{Q}_E$ for $\mu \in \mathcal{Q}_E$ and $a \in [0, 1]$.

Proof (1)(A1) For all $\mu_i \in \Omega_E$,

$$(\bigvee_{i\in\Gamma}\mu_i(x))\odot E(x,y)=\bigvee_{i\in\Gamma}(\mu_i(x)\odot E(x,y))\leq\bigvee_{i\in\Gamma}\mu_i(y).$$

- (A2) and (A3) are easy.
- (A4) $(a \odot (a \rightarrow \mu(x))) \odot E(x, y) \le \mu(x) \odot E(x, y) \le \mu(y)$
- (2) $(\mu(y) \odot (\mu(x) \rightarrow a)) \odot E(x, y) \le \mu(x) \odot (\mu(x) \rightarrow a) \le a$

Corollary 3.11 Let E be an \bigcirc - quasi-equivalence relation on X and $\mathcal{Q}_{E^{-1}}$ denote the collection of fuzzy sets that are right-extensional w.r.t. E. Then

- (1) $(X, \Omega_{E^{-1}})$ is an extensional space.
- (2) $(\mu \rightarrow a) \in \Omega_E$ for $\mu \in \Omega_{E^{-1}}$ and $a \in [0, 1]$.

Remark 3.12 Let E be an \bigcirc - quasi-equivalence relation on X. The triple $(X, \mathcal{Q}_E, \mathcal{Q}_{E^{-1}})$ is a bi-extensional space.

Definition 3.13 Let
$$\bigcirc$$
, \otimes be t-norms. \otimes dominates \bigcirc if for each $x_1, x_2, y_1, y_2 \in [0, 1]$ $(x_1 \bigcirc, y_1) \otimes (x_2 \bigcirc y_2) \geq (x_1 \otimes x_2) \bigcirc (y_1 \otimes y_2)$.

Theorem 3.14 Let \bigcirc, \otimes be t-norms. \otimes dominates \bigcirc . Let $\mathcal{Q} = \{h_i \mid j \in J\}$ be an extensional system. Then

(1) There exists an unique quasi-equivalence relation $E_{\mathcal{Q}}$ on X such that $\mathcal{Q} = \mathcal{Q}_{E_{\mathcal{Q}}}$ defined as

$$E_{\mathcal{Q}}(x, y) = \bigwedge_{j \in J} (h_j(x) \rightarrow h_j(y))$$

where $\mathcal{Q}_{E_{\mathcal{Q}}}$ is the collection of fuzzy sets that are left-extensional w.r.t. $E_{\mathcal{Q}}$.

(2) There exists an unique quasi-equivalence relation $E_{\mathcal{Q}}^{-1}$ on X such that $\mathcal{Q} = \mathcal{Q}_{E_{\mathcal{Q}}^{-1}}$ defined as

$$E_{\mathcal{Q}}^{-1}(x, y) = \bigwedge_{j \in I} (h_j(y) \rightarrow h_j(x))$$

where $\mathcal{Q}_{E_{\varrho}^{-1}}$ is the collection of fuzzy sets that are right-extensional w.r.t. E_{ϱ}^{-1} .

(3) If $(h \rightarrow a) \in \Omega$ for each $h \in \Omega$, $a \in [0,1]$. there exists a unique equivalence relation E_{\wedge} on Xsuch that $\Omega = \Omega_{E_{\wedge}}$ defined as

$$E_{\wedge}(x, y) = \bigwedge_{i \in I} ((h_j(x) \rightarrow h_j(y)) \wedge (h_j(y) \rightarrow h_j(x))).$$

where $\mathcal{Q}_{E_{\wedge}}$ is the collection of fuzzy sets that are extensional w.r.t. E_{\wedge} .

(4) If (a) $(h\rightarrow a)\in \mathcal{Q}$ for each $h\in \mathcal{Q}$, $a\in [0,1]$. (b) $(h_1\otimes h_2)\in \mathcal{Q}$ for each $h_1,h_2\in \mathcal{Q}$ where \otimes dominates \odot , then there exists a unique equivalence relation E_{\otimes} on X such that $\mathcal{Q}=\mathcal{Q}_{E_{\otimes}}$

defined as

$$E_{\otimes}(x,y) = \bigwedge_{i \in I} ((h_i(x) \to h_i(y)) \otimes (h_i(y) \to h_i(x)))$$

where $\mathcal{Q}_{E_{\otimes}}$ is the collection of fuzzy sets that are extensional w.r.t. E_{\otimes} .

Proof. (1) For all $\mu \in \mathcal{Q}$, since μ is extensional w.r.t. $E_{\mathcal{Q}}$, $\mu \in \mathcal{Q}_{E_{\mathcal{Q}}}$. Hence $\mathcal{Q} \subset \mathcal{Q}_{E_{\mathcal{Q}}}$.

Let $\rho \in \Omega_{E_o}$. Define

$$\rho_{z}(x) = \rho(z) \odot E_{Q}(z, x) = \rho(z) \odot \bigwedge_{v \in Q} (v(z) \rightarrow v(x))$$

By (A2)-(A4), $\rho_z \in \mathcal{Q}$. Since ρ is extensional w.r.t. $E_{\mathcal{Q}}$, then $\rho_z(x) = \rho(z) \odot E_{\mathcal{Q}}(z, x) \le \rho(x)$.

Since
$$\rho_z(z) = \rho(z) \odot E_{\varrho}(z, z) = \rho(z)$$
, by (A1) $\rho = \bigvee_{z \in \mathcal{X}} \rho_z \in \mathcal{Q}$.

Let an quasi-equivalence relation F on X with $\mathcal{Q}_F = \mathcal{Q}$. Then $F \leq E_{\mathcal{Q}}$. Define $\rho_y(z) = F(y,z)$. Since $\rho_x(y) \odot F(y,z) = F(x,y) \odot F(y,z) \leq F(x,z) = \rho_x(z)$ ρ_y is left-extensional w.r.t. F. By $\mathcal{Q}_F = \mathcal{Q}_E = \mathcal{Q}$, $\rho_y \in \mathcal{Q}$ for all $y \in X$. Thus ρ_x is extensional w.r.t. $E_{\mathcal{Q}}$; i.e. $E_{\mathcal{Q}}(x,y) = \rho_x(x) \odot E_{\mathcal{Q}}(x,y) \leq \rho_x(y) = F(x,y)$.

(4) We easily show that E_{\otimes} is an \odot -equivalence relation from:

$$E_{\otimes}(x,y) \odot E_{\otimes}(y,z)$$

$$= \bigwedge_{j \in J} ((h_j(x) \rightarrow h_j(y)) \otimes (h_j(y) \rightarrow h_j(x)))$$

$$\odot \bigwedge_{i \in J} ((h_j(y) \rightarrow h_j(z)) \otimes (h_j(z) \rightarrow h_j(y)))$$

$$\leq \bigwedge_{j \in J} \{ ((h_j(x) \to h_j(y)) \odot (h_j(y) \to h_j(z))) \\ \otimes ((h_j(y) \to h_j(x)) \odot (h_j(z) \to h_j(y))) \}$$

$$\leq \bigwedge_{j \in J} ((h_j(x) \to h_j(z)) \otimes (h_j(z) \to h_j(x)))$$

$$= E_{\otimes}(x, z).$$

For all $\mu \in \mathcal{Q}$, since μ is extensional w.r.t E_{\otimes} . $\mu \in \mathcal{Q}_{E_{\otimes}}$. Hence $\mathcal{Q} \subset \mathcal{Q}_{E_{\otimes}}$.

Let $\rho \in \Omega_{E_{\alpha}}$. Define

$$\rho_{z}(x) = \rho(z) \odot E_{\otimes}(z, x)$$

$$= \rho(z) \odot \bigwedge_{z \in \mathcal{Q}} (\nu(z) \rightarrow \nu(x)) \otimes (\nu(z) \rightarrow \nu(x)))$$

By (A1)-(A4) and conditions, we have $\rho_z \in \Omega$. Since ρ is left-extensional w.r.t. E_{\otimes} , $\rho_z(x) = \rho(z) \odot E_{\otimes}(z, x) \leq \rho(x)$.

Since
$$\rho_z(z) = \rho(z) \odot E_{\otimes}(z, z) = \rho(z)$$
, by (A1), $\rho = \bigvee_{z \in \mathcal{Q}} \rho_z \in \mathcal{Q}$.

Other case are similarly proved.

Theorem 3.15 Let \odot be a continuous t-norm. Let $\Omega = \{h_j \mid j \in J\}$ be an extensional system. Then $c_{\mathcal{Q}}[0,1]^X \rightarrow [0,1]^X$ defined by

$$c_{\mathcal{Q}}(\lambda) = \bigwedge \{ \rho \mid \lambda \leq \rho, \quad \rho \in \mathcal{Q} \}$$

is a quasi-approximation operator.

Proof (C1) it is easy.

(C2) Since
$$c_{\mathcal{Q}}(\mu) \in \mathcal{Q}$$
, then $c_{\mathcal{Q}}(c_{\mathcal{Q}}(\mu)) = c_{\mathcal{Q}}(\mu)$

(C3)
$$\bigvee_{i} c_{\mathcal{Q}}(\mu_i) \leq c_{\mathcal{Q}}(\bigvee_{i} \mu_i).$$

Since
$$\bigvee_{i \in \Gamma} c_{\mathcal{Q}}(\mu_i) \in \mathcal{Q}$$
 and $\bigvee_{i \in \Gamma} \mu_i \leq \bigvee_{i \in \Gamma} c_{\mathcal{Q}}(\mu_i)$, $\bigvee_{r} c_{\mathcal{Q}}(\mu_i) \geq c_{\mathcal{Q}}(\bigvee_{r} \mu_i)$

(C4) Since all $a \in [0,1]$ and $\rho \in \Omega$, then $(a \odot \rho) \in \Omega$. So, $\bigwedge \{a \odot \rho \mid \lambda \leq \rho, \ \rho \in \Omega\} \geq \bigwedge \{\mu \mid a \odot \lambda \leq \mu, \ \mu \in \Omega\}$.

For $\mu \in \Omega$ with $a \odot \lambda \leq \mu$, we have $\lambda \leq (a \rightarrow \mu) \in \Omega$. It implies $a \odot \lambda \leq (a \odot (a \rightarrow \mu)) \in \Omega$. Since $(a \odot (a \rightarrow \mu)) \leq \mu$,

$$\begin{split} a \odot c_{\mathcal{Q}}(\lambda) &= a \odot \bigwedge \{ \rho \mid \lambda \leq \rho, \ \rho \in \mathcal{Q} \} \\ &= \bigwedge \{ a \odot \rho \mid \lambda \leq \rho, \ \rho \in \mathcal{Q} \} \\ &= \bigwedge \{ \mu \mid a \odot \lambda \leq \mu, \ \mu \in \mathcal{Q} \} \\ &= c_{\mathcal{Q}}(a \odot \lambda). \end{split}$$

Theorem 3.16 Let (X, c) be an \odot -upper quasi-approximation space. Define an operator $E_c: X \times X \rightarrow [0, 1]$ as follows:

$$E_c(x, y) = c(1_x)(y)$$

Then

(1) E_c is an \odot -quasi-equivalence relation on X.

(2)
$$E_{c_E} = E$$
, $c_{E_c} = c$, $E_{Q_E} = E$.

Proof (1) Since
$$\mu(x) = \bigvee_{z \in X} (\mu(z) \odot 1_{z}(x))$$
, we have $c(\mu)(x) = c(\bigvee_{z \in X} (\mu(z) \odot 1_{z}(x))) = \bigvee_{z \in X} (\mu(z) \odot c(1_{z})(x))$. (E3)
$$E_{c}(x,y) = c(1_{x})(y) = c(c(1_{x}))(y)$$

$$= \bigvee_{z \in X} ((c(1_{x})(z) \odot c(1_{z})(y)))$$

$$= \bigvee_{z \in X} (E_{c}(x,z) \odot E_{c}(z,x)).$$

(2)

$$E_{c_E}(x, y) = c_E(1_x)(y) = \bigvee_{z \in X} (1_x(z) \odot E(z, y)) = E(x, y).$$

$$c_{E_c}(\mu)(x) = \bigvee_{z \in X} (\mu(z) \odot E_c(z, x))$$

$$= \bigvee_{z \in X} (\mu(z) \odot c(1_z)(x)) = c(\mu).$$

Since $\mu \in \Omega_E$, then $E(x, y) \le \mu(x) \rightarrow \mu(y)$.

Hence $E_{Q_n}(x, y) \ge E(x, y)$

Since $\overline{1}_x \in \Omega_E$, then

$$E_{Q_x}(x,y) \le (\overline{1}_x(x) \to \overline{1}_x(y)) = \overline{1}_x(y) = E(x,y).$$

Corollary 3.17 Let (X, c) be an \odot -upper quasi-approximation space. Define an operator $E : X \times X \to [0, 1]$ as $E_c^{-1}(x, y) = c(1, y)(x)$. Then

- (1) E_c^{-1} is an \bigcirc -quasi-equivalence relation on X.
- (2) $E_{c_{\bar{c}}^{-1}}^{-1} = E^{-1}$, $c_{E_{\bar{c}}^{-1}} = c$, $E_{Q_{\bar{c}}^{-1}}^{-1} = E^{-1}$.

Theorem 3.18 Let (X, c) be an \bigcirc -quasi-approximation space. Then

- (1) $\mathcal{Q}_c = \{\mu \in [0,1]^X \mid c(\mu) = \mu\}$ is an extensional space on X such that $c = c_{\mathcal{Q}_c}$ and $\mathcal{Q}_{c_{\mathcal{Q}}} = \mathcal{Q}$
 - (2) $E_c = E_{\Omega}$

Proof. (1) Since $c_{\mathcal{Q}_c}(\lambda) = \bigwedge \{ \rho \mid \lambda \leq \rho, \ \rho \in \mathcal{Q}_c \}$ and $\rho = c(\rho)$, then $c_{\mathcal{Q}_c}(\lambda) \geq c(\lambda)$. Since $\lambda \leq c(\lambda)$, $c_{\mathcal{Q}_c}(\lambda) \leq c(\lambda)$. Hence $c = c_{\mathcal{Q}_c}$.

Let $\mu \in \mathcal{Q}_{c_g}$. Then $c_{\mathcal{Q}}(\mu) = \mu \in \mathcal{Q}$. Let $\rho \in \mathcal{Q}$. Then $c_{\mathcal{Q}}(\rho) = \rho$. $\rho \in \mathcal{Q}_{c_g}$.

(2) For $c(1_x) \in \mathcal{Q}_c$ for each $x \in X$, $E_c(x,y) = c(1_x)(y) = (c(1_x)(x) \rightarrow c(1_x)(y)) \geq E_{\mathcal{Q}_c}(x,y)$.

Since
$$\mu(y) = \bigvee_{z \in X} (1_z(y) \odot \mu(z)),$$

$$c(\mu)(y) = \bigvee_{z \in Y} c(1_z)(y) \odot \mu(z)$$

It implies $c(1_x)(y) \le (\mu(x) \to c(\mu)(y))$.

Thus

$$E_{c}(x,y) = c(1_{x})(y) \le \bigwedge_{\mu \in \Omega_{c}} (\mu(x) \rightarrow c(\mu)(y)).$$

Theorem 3.19. (1) Let (X, c_1) and (Y, c_2) be \odot -upper quasi approximation spaces. The following statements are equivalent

- (a) $\phi: X \rightarrow Y$ is a c-map,
- (b) $\phi: (X, E_{c_1}) \rightarrow (Y, E_{c_2})$ is an E-map.
- (c) $\phi: (X, \Omega_{c_1}) \rightarrow (Y, \Omega_{c_2})$ is an A-map.
- (2) Let (X, E_1) and (Y, E_2) be \bigcirc -quasi equiv-

alence spaces.

(d) $\phi: X \rightarrow Y$ is an E-map.

(e)
$$\phi: (X, c_{E_1}) \rightarrow (Y, c_{E_2})$$
 is a c-map

(f)
$$\phi: (X, \Omega_{E_1}) \rightarrow (Y, \Omega_{E_2})$$
 is an A-map.

(3) Let (X, \mathcal{Q}_1) and (Y, \mathcal{Q}_2) be extensional spaces. Let \odot be a continuous t-norm.

(g) $\phi: X \rightarrow Y$ is an A-map.

(h)
$$\phi: (X, E_{Q_s}) \rightarrow (Y, E_{Q_s})$$
 is an E -map.

(i)
$$\phi: (X, c_{\Omega_1}) \rightarrow (Y, c_{\Omega_2})$$
 is a c-map.

(4) Let (X, c_1) and (Y, c_2) be

⊙-upper quasi-approximation spaces. Then $\phi:(X,c_1)\to (Y,c_2)$ is a c-map iff $\phi(c_1(1_x)) \le c_2(1_{\phi(x)})$ for each $x \in X$.

Poof (1) (a) \Rightarrow (b)

$$E_{c_1}(x, y) = c(1_x)(y) \le \phi(c_1(1_x))(\phi(y))$$

$$\leq c_2(1_{\phi(x)})(\phi(y)) = E_{c_2}(\phi(x),\phi(y)).$$

Conversely, it follows (2-e) and $c_{E_i} = c_i$ for i = 1, 2.

(a)
$$\Rightarrow$$
 (c) Since $c_1(\phi^{-1}(\mu)) \le \phi^{-1}c_2(\mu)$,

for
$$\mu \in \mathcal{Q}_{c_z}$$
, we have $\phi^{-1}(\mu) \in \mathcal{Q}_{c_z}$

Conversely, it follows (3-i) and $c_{Q_{c_i}} = c_i$ for i = 1, 2. (2) (d) \Rightarrow (e)

$$\begin{split} \phi(c_{E_1}(\mu))(y) &= \bigvee_{x \in \phi^{-1}(\{y\})} c_{E_1}(\mu)(x) \\ &= \bigvee_{x \in \phi^{-1}(\{y\})} \bigvee_{z \in X} (E_1(z, x) \odot \mu(z)) \\ &\leq \bigvee_{z \in X} (E_2(\phi(z), \phi(x)) \odot \phi(\mu)(\phi(z))) \\ &\leq c_{E_1}(\phi(\mu))(y) \,. \end{split}$$

Conversely, it follows (1-b) and $E_{c_{E_i}} = E_i$ for i = 1, 2. (d) \Rightarrow (f) For $\mu \in \mathcal{Q}_{E_2}$,

$$\phi^{-1}(\mu)(x) \odot E_1(x, y) \le \mu(\phi(x)) \odot E_2(\phi(x), \phi(y))$$

$$\leq \mu(\phi(x)) = \phi^{-1}(\mu)(y).$$

Hence $\phi^{-1}(\mu) \in \Omega_{E_1}$

Conversely, it follows (3-h) and $E_{Q_{E_i}} = E_i$ for i = 1, 2.

(3) (g) \Rightarrow (h) Since $\mu \in \Omega_2$ implies

 $\phi^{-1}(\mu) \in \Omega_1$, we have

$$E_{\mathcal{Q}_{2}}(\phi(x), \phi(y)) = \bigwedge_{\mu \in \mathcal{Q}_{2}} (\mu(\phi(x)) \to \mu(\phi(x)))$$

$$= \bigwedge_{\mu \in \mathcal{Q}_{2}} (\phi^{-1}(\mu)(x) \to \phi^{-1}(\mu)(y))$$

$$\geq \bigwedge_{\rho \in \mathcal{Q}_{1}} (\rho(x) \to \rho(y))$$

$$= E_{\mathcal{Q}_{2}}(x, y).$$

Conversely, it follows (2-e) and $\Omega_{E_{g_i}} = \Omega_i$ for i = 1, 2. (g) \Rightarrow (i)

$$\phi^{-1}(c_{\Omega_2}(\phi(\lambda))) = \phi^{-1}(\bigwedge \{\mu \mid \phi(\lambda) \leq \mu, \ \mu \in \Omega_2\})$$
$$= \bigwedge \{\phi^{-1}(\mu) \mid \lambda \leq \phi^{-1}(\mu), \ \mu \in \Omega_2\}$$
$$\geq c_{\Omega_1}(\lambda).$$

It implies $c_{\mathcal{Q}_2}(\phi(\lambda)) \ge \phi(c_{\mathcal{Q}_1}(\lambda))$

Conversely, it follows (1-c) and $\Omega_{c_{ai}} = \Omega_i$ for i = 1, 2.

(4) Since
$$\lambda = \bigvee_{z \in X} \lambda(z) \odot 1_z$$
, we have

$$\phi(c_{1}(\lambda))(y) = \bigvee_{x \in \phi} c_{1}(\bigvee_{\{y\}}) c_{1}(\bigvee_{z \in X} \lambda(z) \odot 1_{z})(x)$$

$$= \bigvee_{x \in \phi} \bigvee_{\{(y)\}} \bigvee_{z \in X} \lambda(z) \odot c_{1}(1_{z})(x)$$

$$= \bigvee_{z \in X} \lambda(z) \odot (\bigvee_{x \in \phi^{-1}(\{y\})} c_{1}(1_{z})(x))$$

$$= \bigvee_{z \in X} \lambda(z) \odot (\phi(c_{1}(1_{z}))(y))$$

$$\leq \bigvee_{z \in X} \lambda(z) \odot (c_{2}(1_{\phi(z)}))(y)$$

$$\leq \bigvee_{z \in X} \phi(\lambda)(\phi(z)) \odot (c_{2}(1_{\phi(z)}))(y)$$

$$\leq c_{2}(\phi(\lambda))(y).$$

References

- [1] M. De Baets, R. Mesiar, Psedo-metrics and T-equivalences, J. Fuzzy. Math. 5 (1997) 471-481.
- [2] M. De Baets, R. Mesiar, Metrics and T-equalities,J. Math. Anal. 267 (2002) 531-547.
- [3] M. Demirci, Fuzzy functions and their applications,J. Math. Anal. Appl. 252, pp.495-517.2000
- [4] D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. J. General Systems 17 (2-3), pp191-209, 1990.
- [5] D. Dubois, H. Prade, Twofold fuzzy sets and rough sets, Fuzzy Sets and Systems 23, pp 3–18, 1987.
- [6] U. Hoehle, Quotients with respect to similarity relations, Fuzzy Sets and Systems 27, pp. 31-44, 1988.
- [7] J. Jacas, J. Recasens, Fuzzy T-transitive relations: eigenvectors and generators, Fuzzy Sets and Systems 72, 147-154. 1995.
- [8] H.T. Nguyen, E.A. Walker, Fuzzy logic, Chapman and Hall, New York, 2000.
- [9] N.N. Morsi and M.M. Yakout, Axiomatics for fuzzy rough sets, Fuzzy Sets and Systems, 100,pp 327-342, 1998.
- [10] Z. Pawlak, Rough sets, Int.J. Comput. Inform. Sci. 11(5), pp.341-356, 1982.
- [11] L. Valverde, On the structure of F-indistinguish-ability operators, Fuzzy Sets and Systems, 17, 313–328, 1985.
- [12] Y.Y. Yao, Constructive and algebraic methods of the theory of rough sets, Information Sciences, 109 pp. 21-47, 1998.
- [13] Y.Y. Yao, Relational interpretations of neighbor-

hood operators and rough set approximation operators, Information Sciences, 111 pp. 239-259. 1998.

[14] L.A. Zadeh, Similarity relations and fuzzy orderings, Information Sciences. 3 (1971) 177-200.

저 자 소 개

Yong Chan Kim

He received the M.S and Ph.D. degrees in Department. of Mathematics from Yonsei University, in 1984 and 1991, respectively. From 1991 to present, he is a professor in the Department of Mathematics, Kangnung University. His research interests are fuzzy topology and fuzzy logic.

Jung Mi Ko

She received the M.S and Ph.D. degrees in Department. of Mathematics from Yonsei University, in 1982 and 1988, respectively. From 1988 to present, she is a professor in the Department of Mathematics, Kangnung University. Her research interest is fuzzy logic.