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Abstract

We define extensional spaces. Moreover, we
T-quasi-equivalence relations and extensional spaces.
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1. Introduction

Zadeh[13] introduced the concept of fuzzy equivalence
relations. It has a significant concern in various fields.

The rough set concept proposed by Pawlak [10] is a
new mathematical approach to imprecision, vagueness
and uncertainty. Yao [12,13] investigated algebraic struc-
tures of rough sets as upper approximation operators.
Dubois and Prade [4,5] introduced fuzzy rough sets as a
fuzzy generalization of rough sets.

In this paper, we define extensional spaces. Moreover,
we . investigate the relations among T-upper—approx-
imation spaces, T-quasi-equivalence relations, exten-—
sional spaces.

2. Preliminaries

Definition 2.1 A binary operation T:[0,11x[0,1]1—[0,1]
is called a t-norm if it satisfies the following conditions:

for each x,y,z<[0,1],

(T1) T(x,»)=T(y,2),

(T2) T(x, T(y, 2)) = T(T(x,3), 2)

(T3 T(x,1)=x,

(T4) if y<gz, then T(x, »<T(x, 2).

We denote T(x,y)=xOy.

Definition 2.2 Let T be a t-norm. A binary operation
—:[0,11x[0,1]1—[0,1] is called a residual implication on
X defined by

x=y=\/{2€[0,11 | T(x,2)<y}

Theorem 2.3 [2] Let © be a t-norm. Then the follow-
ing statements are equivalent:

(1) © is left-continuous;

(2) xO(x—y)<y for all x,y=[0,1];

3) x<(y—z2) iff xOy<z for all x,y,2(0,1];

4) (x—y»)O(y—2)<(x—2) for all x,y,2=[0,1].
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investigate the relations

among T-upper-approximation spaces,

: T-upper-approximation spaces, T-quasi-equivalence relations, extensional spaces. E-maps, c-maps,

In this paper, we assume that © is left continuous.

Definition 2.4.[14]1 A map EXxX—[0,1] is called a
T-quasi-equivalence relation on X if the following
properties hold:

(E1) E(x,x)=1, for each x=X,

(E2) T(E(x,y),E(y,2))<E(x,2), for each x,y,2€X.

A T-fuzzy quasi-equivalence relation is called a T-
equivalence relation on X if it satisfies:

(E3) E(x,y)=E(y,x), for each x,yeX.

A T-fuzzy equivalence relation is called a T-equality
on X if it satisfies:

(E) if E(x,y)=1 for each x,y=X, then x=y.

Let (X,E) and (Y,E,) be ®O-fuzzy quasi-

equivalence relations. A function & X—Y is called

E-map if E,(x,3)<Ey(é(x), ¢(y)) for each

(x,y)eXxX.

Remark 25 (1) If a t-norm 7T, is weaker than a
t-norm T ,, then a T ,-fuzzy (quasi-)equivalence E on
X is a T ,-fuzzy (quasi-)equivalence E on X. Thus,
A-fuzzy (quasi-)equivalence E on. X is a T-fuzzy
(quasi-)equivalence E on X because T(x,y<xAy for
every t-norm 7.

(2) Let E be a T-fuzzy quasi~equivalence relation on

X. Define E "Yx,v)=E(y,x) for all x,yeX. Then
E~'is a T-fuzzy quasi-equivalence relation on X.

3. T-upper approximation operators

Definition 3.1 [9] An operator «¢[0,1] *—[0,11% is
called an O-upper quasi-approximation operator on X
if it satisfies the following conditions:

(Ch) 1,.<c(1),

(C2) z\e/X(C(l DOl )=l )y,
(C3) }é]ﬂ D= }E/]d# 7,
(C4) Aa®p)=aOc ) where alx)=a.

The pair (X, ¢) Is an O-upper quasi-approximation
space.



An operator ¢ is called an O-upper approximation
operator on X if it satisfies:

O 1 )»=cl )=,

Let (X,c¢,) and (Y,c¢,) be O-upper quasi approx-
imation spaces. A function ¢ X—Y is called a c-map if
#(c ()< c(¢(w) for each p=l[0,117%

Theorem 3.2 Let (X, c) be an (O-upper quasi-approx—
imation space. Then, for all we[0,1]%
(1) 1,<c(l, for all xX iff u<c(p),

(2) it satisfies (C2) iff c(e())=c(y).
Proof.(1) Since u(x)= Z\E/X(u(z)(Dl (), then

() = e V(42O )
- V(1201 ).
> V(MO V(e JOOc1 ).
=V, V(4D O1 )(»O(1 )(2)).
=V, V(01 J)OeL ).
= VOV (M@0 1 X0 )00,
= V(RO ))).

ye

= c(c()(x).

Theorem 3.3 Let (X, E)be an (®-quasi-equivalence re—

lation space. Define ¢ g[0,11*—[0,1]1% as follows:

c W)= Z\E/X(ﬂ(z) OFE(z,x)

Then ¢z is an O-upper quasi-approximation oper—
ator on X.
Proof (C2)
Z\E/X(c(l (@01 )(v)

}E/X(E(x, 2)OE(z,y))
<E(x,y)= 2\€/X(1 (2DOE(z,y)
= (1 J(2).

Other cases are easily proved.

Corollary 3.4. Let (X,E)be an (O-quasi equivalence

relation space. Define ¢ ,-:[0,11 *=[0,11 ¥ as

¢ p- ()=, ((OE(x.2))

Then ¢ ;- is an O-upper quasi-approximation oper-

ator on X.

Definition 3.5 [3] Let E be a quasi-equivalence relation
on X. A fuzzy set pusI”¥ is called:
(1) left-extensional with respect to E on X if
#()OE(x, »<u(y) for all x,y=[0,1]. A fuzzy

VAV () OB(w, 20O V (1 () OE5, 7))

T-upper approximation spaces

set peIl¥ is called the left-extensional hull
defined as

= N{o | p<p, p is left-extensional wrt £}
(2) right-extensional with respect to E on X if
#(MOE(x, w<p(x) for all x,y=l0,1]. A fuzzy
set FEI % is called the right-extensional hull
defined as

w7 '= A {eo | u<p, o right-extensional wrt E}

Example 3.6 Let X={x,y, 2} be a set and
Wy=(x+y—DV0 and x—>y=(1—x+ WAl
for all x,y=l[0,1]. Define an ®O-fuzzy quasi-equiv-
alence relation E on X as follows:
E(x,0)=E(,y)=E(2,2)=1,E(x,5) =0.8, E(y,x)=0.7,
E(x,2)=0.6,E(y,2)=0.7,FE(2,»=0.9,E(2,x) = 0.7
For pu(x)=0.7,1(y=0.1,1(2)=0.3,
0.5=pu()OE(x, v)> u(»=0.1
So, # is not left-extensional with respect to E

Definition 3.7 A subset 2 of [0,1]1 ¥ is called an it
extenstonal system on X if it satisfies: for each
{u i} iEIC‘Q!/“E‘Q

(Al) Ve

(A2) Nu.eQ,

(A3) aOupeg,

(Ad) (a—pef.

The pair (X, Q) is called an extensional space. Let

£, and £, be extensional systems on X.

The' triple (X, 2,,2,) is a called bi-extensional
space, '

Let (X,2)) and (Y, 8,) be extensional spaces.

A function ¢ X—Y is called an A-map if

¢ Uwe, for each p=Q,.

Theorem 3.8 Let E be an (O-quasi-equivalence relation
on X and let #=[0,1]1%. Then
1) m(x)=cg()(x)= V (u(2)OE(z, 2))

(2) u is left-extensional wrt E

(3) u=u
@ K p=p, then aop=a—u, dou=alOp.
(5) u is left-extensional w.rt E iff
E(x, )< p(x)—p(y).
Proof (1) c¢ z(u) is extensional w.rt. E because

¢ (WO E(x,y) =( Z\E/X(ﬂ(z)GE(z,x)))GE(x, »
}E/X(ﬂ(Z)G(E(z,x)QE(x, »)
2\Q/X(/J(Z)G) (E(z, )

A

=c ().
#(x) = p()OE(x, x)< Z\E/X(;u(z)QE(z,x)) = ¢ g(1)(x)

If u<p and p is extensional wrt E, thenc g(¢)<p
because

515



HX| 9 X sAAHEE =X 2005, Vol 15, No. 4

¢ gf{()(x)= }E/X(u(Z)GE(z,x))S Z\E/X(p(z)QE(z, )< o(x)

(4) Since (p—@Qr=p—(q07),
a—>u(x) =( Z\E/X((a—w)(Z)QE(z, x))

(Ve (u(2) OE(z, 1))
=a~( V (2O E(z,0))
= a— u(x)
= g—u(x).

Other cases are easy.

Corollary 39 Let E be an O-quasi-equivalence rela-
tion on X and let p=[0,1]1%. Then

1) g ' W=cp(wx)= V (1(2OB(x, 2)
2 p!
3 p ' =pl
(4) If p~'=p, then
a—p T=a—-u, aOupl=a0Opu.
(5) u is right-extensional wr.t E iff
E(x, )< p(y)—p(x).

is right-extensional wrt E

Theorem 3.10 Let E be an (O- quasi-equivalence rela-
tion on X and £ denote the collection of fuzzy sets

that are left-extensional wrt. E. Then
(1) (X, R ) is an extensional space.
(2) If E is a equivalence relation on X, then
(p—a)eR g for p=Q; and a<[0,1].

Proof (1)(Al) For all ¢ .2,
(}E/rﬂ {LNOE(x, y) = z\e/r(# J(OOE(x, »)< ,\-e/r# {y.
(A2) and (A3) are easy.

(A1) (aO(a—u())OE(x, »)<u(x) OF(x, )< u(y)
(2) (UPO(p(x)—a))OE(x, )< pu(0)O(u(x)—a)<a

Corollary 3.11 Let E be an - quasi-equivalence re-
lation on X and & ;-. denote the collection of fuzzy sets

that are right-extensional w.r.t. E. Then
(1) (X, 2 ;) is an extensional space.

Q) (p—a)ely for peR - and «=[0,1].

Remark 3.12 Let E be an O~ quasi-equivalence rela-
tion on X. The triple (X, 82z, ;- is a bi-extensional
space.
Definition 3.13 Let ©,® be t-norms. ®
dominates © if for each x,,x,,5,,y,<(0,1]
(,0,y ) ,0y )2 (x,Bx )O(y Qv o).

Theorem 3.14 Let ©,® be t-norms. ® dominates ©.
Let Q= {%;| jeJ} be an extensional system. Then

(1) There exists an unique quasi-equivalence relation
E 4 on X such that 2=8 ;_ defined as

E o(x,y)= Q](h i )=k {y)
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where 2, is the collection of fuzzy sets that are
left-extensional wrt. E .

{2) There exists an unique quasi-equivalence relation
E3' on X such that Q=0 . defined as

EQN(x, = AN ()= b ()

where £ .., is the collection of fuzzy sets that are

right-extensional wrt. E3hL

(3) If (h—a)ef for each h=Q, a<s[0,1].
there exists a unique equivalence relation
E 5 on Xsuch that =2 ; defined as

E\(x,0)= {E\]((h,- )=k AN (B ()= 1 (x).

where @ is the collection of fuzzy sets that are

extensional wrt. E .

4) If (@) (h—a)eR for each heQ, e=[0,1]. ()
(h @k for each h,h,e82 where ® dominates
©, then there exists a unique equivalence relation FE g
on X such that Q=Qp '

defined as

Eg(x, )= {E\]( (h ()= h NSk ; ()~ h (x)))

where 2  is the collection of fuzzy sets that are

extensional w.rt. Eg.

Proof. (1) For all pe®, since ¢ is extensional w.r.t.

E, nefp, Hence £CQy .
Let p=Qg,. Define

0 () =p(2OE o(z,x)= p(2)© V/e\g(”(z)#*”(x))

By (A2)-(A4), o0,=Q. Since p is extensional w.r.t.
E 5, then p (0)=p(2)OE o(z,20)<po(x).

Since p ,(2)=p(2)OE o2, 2)=p(z), by (Al)

o= z\E/Xp S8

Let an quasi-equivalence relation F on X with
2:=29 Then F<E, Define p (2)=F(y,2). Since

0 ANOF(y,2) =F(x, YOF(y, 2)<F(x,2) = 0 (2)

0, is left-extensional wrt. F. By 2,=02,=2,

0,2 for all yeX. Thus p . is extensional wur.t.
E g ie E x, =0 (0)OF ox, V< p (3)=Fl(x,y).

(4) We easily show that Eg is an O-equivalence
from:

E g(x,9)OF g(3,2)
= {E\]( (B ; (0= h (MR (1 ;(»—h 0))
O] ]/,E\]((h iD= (2)R(h ;(2)=h (9D

relation



< {E\]{( (2 ;)= (O (h ;(3)—h (2)))
QU ()= h LNO(k (2= h (N}

< {E\]((h 7=k ()R (h j(2)—h (x)))
=F ®(x, Z).

For all =L, since p is extensional wrt Eg.

pelp, . Hence QCQp .

Let p=Q g . Define

o ()=p(2)OF g(z,x)

= p(2)® V/E\Q(V(Z)qu(x))®( U z2)— u(x)))

By (Al1)-(A4) and conditions, we have p,=Q.
Since p is left-extensional wrt. FEg,
0 (0)=p(2)OF g(z,2)= o(x).

Since o (2)= (2O E g(z,2)=p(2), by (Al),

o= z\e/Xp <L

Other case are similarly proved.
Theorem 3.15 Let O be a continuous t-norm.

Let 2=1{h;| je]} be an extensional system. Then
cg[0,11*=[0,1]1% defined by

coD=Alo | i<p, =02}

is a guasi-approximation operator.
Proof (Cl) it is easy.

(C2) Since c (e, then colcg(wW)=colpw)

(C3) l\‘E/FC Q(# ,-)SC _()( z\'e/["u ,‘).

Since l\e/rc olp e and >€/rﬂ < ’\E/rc ols ),

z\e/l"c _Q(# 1‘)26’ _Q( ’\e/rﬂ 5)

(C4) Since all 2=[0,1] and peQ, then (a®p)ef. So,
MNa®p | A<, peQ}= N{p | adOi<y, p=}.

For wuef with a®A<py, we have A<(g—p)eQ. It

implies a@A<(aO(a—w)ef. Since (a®O(a—w)=<y,

A a®p | a@i<a®p, p=}<N\{p | aDi<sy, pefd}

Since © is continuous,
a®c () =aOA{p | i<p, 0=}
=/N\{aOp | 1<p, 0=2}
=N{u| a@i<y, peQ)
= c (a®A).
Theorem 3.16 Let (X,c¢) be an O-upper quasi-ap-

proximation space. Define an operator E ;XxX—[0,1]
as follows:

E (x,»)=c1 )»

Then
(1) E.is an (®-quasi~equivalence relation on X.
(2) E.,=E, cg.=c, E, =E.

T-upper approximation spaces

Proof (1) Since u(x)= z\e/X(u(z)G)l Ax)), we have
c()(x) =l Z\E/X(/t(Z)G)l A0 = Z\E/X(#(Z)Q (1 )(x).

(E3)
E (x,y» = )= clcl (¥

Z\E/X((C(I 2201 )(»))
Z\E/X(E L, 2)OF (2,x).

i

i

(2)
E (x9)=cp1)0= V(1,(R0Ez7)=Ex, ).

cp ()x) = Z\E/X(u(z)(DE Lz, x)
Z\E/X(ﬂ(z)G (1 )(x))= ().

Since weR g, then E(x, »)<pu(x)—u(y).
Hence E g (%,9)= E(x,)

Since 1, g, then
Eg (2,9 (1 (0~ 1,0)=T1,0)=Ex,»).

Corollary 3.17 Let (X,¢) be an (O-upper quasi-ap-
proximation space. Define an operator E ;XxX—[0,1]
as E_Yx,3)=c1,)(x). Then
(1) E7!is an ®O-quasi-equivalence relation on X.
@ EL=E"Y cpi=c, EQL=E".

Theorem 3.18 Let (X,¢) be an ©O-quasi-approx—
imation space. Then

1) 2.={es[0,11% | =4} is
space on X such that ¢=c¢ o, and 2. =8
(2) E (::EQC

an extensional

Proof. (1) Since ¢y (A=Al{p | 2<p, 02} and
po=c(p), then ¢4 (D=c(A). Since A<c(A),
¢ (A=c(A). Hence c=c o
Let n=g.,. Then c(y=preQ Let =L Then
colo)=p. 08,
(2) For 1 ,)eQ, for each x€X,
E (x,3)=c1 )3 =(c(1 Xx)=c(1 JOZE 4 (x,3).
Since (y)= :\G/X(l SN0 u(2)),

c()(y)= z\e/XC(l )Ou(2)

It implies (1 D) =<(u(x)—>c( ().
Thus

E (x, )= )< #/& ()~ 1))

Theorem 3.19. (1) Let (X,c,) and (Y,c,) be O©

-upper quasi approximation spaces. The following state—
ments are equivalent
(a) ¢#X—Y is a c-map,
(b) ¢(X,E,)~>(Y,E_) is an E-map.
(©) ¢(X,2,)~(Y,2,) is an A-map.
(2) Let (X,E,) and (Y,E,;) be O-quasi equiv-
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alence spaces.

(d #X—Yis an E-map.

() ¢(X,cp)—(Y,cg,) is a c-map

) $(X,2;)~(Y,2;) is an A-map.
(3) Let (X,2,) and (Y, Q,)be extensional
Let © be a continuous t—norm.

(g) #X—Y is an . A-map.

(h) #(X,E,)~(Y,Ep) is an E-map.

@) ¢(X,co)~(Y,cp) is.a c-map.
(4) Let (X,c,) and (Y, c,) be
O-upper quasi—approximation spaces.
¢ (X,c,))—(Y,c,) is a c-map iff
#(c (1 N<cy(1 4 for each x=X.

spaces.

Then

Poof (1) (a) =(b)
E . (x,9)=c(1 )=<d(c,(1 ()

< (1 4o =E . (¢(x), ().
Conversely, it follows (2-€) and ¢y, =c for i=1,2.
(a) =(c) Since ¢ (¢ "' (L)< ¢ ~'cyln),
for ueQ,, we have ¢ "'"(WeQ .,
Conversely, it follows (3-1) and ¢, =c for i=1,2.

@2 @ =(e)
¢(c g (D))

il

V g ()

xe¢ " ({yD)

V (E (2,00 u(2)

xed 1({y) 26X

V(B4 (8(2), B)OH ()
< g (B,

A

Conversely, it follows (1-b) and E . =E for i=1,2.

(@) =) For peQ;,

¢ HWDOE (x,9) <p(¢(x)OF ,($(x), (3))
<p(d(x)=¢ ~(1W).

Hence ¢ '(weQp,

Conversely, it follows (3-h) and E, =E for i=1,2.

(3) (g) =(h) Since g2, implies

¢ "W(weR,, we have

E (82, é(y) = #/ng(u(q’ﬁ(x))ﬁ#w(x)))
=N Tw—¢ T (wH)
= pé}zl(p(x)ap(y))
=Eg,(xy).

Conversely, it follows (2-e) and Q5 = for i=1,2.
(@) = M
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¢ Mg o)) = NN | gDy, p=Q,))
=AW | 1< N, ney)
ZCQX(A).

It implies ¢ o (H)2 ¢lc o (A)
Conversely, it follows (1-¢) and Q. =@ for i=1,2.
(4) Since A= \/XA(z)(Dl . we have

ze

#(c (AN

Vo eV AO1 )G
po b aEX

re " {y

=V \/XA(z)(Dc (1 D

xed () 2=

= YV, ARO( xe¢\_/l( o’ (1 )(x))
= VAR 0((c (1))

V ARO (e, (1 4 )(3))

<V, #((2)0(e, (1 4 ))(3))

<c (@A)

IA
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