DOI QR코드

DOI QR Code

A New Path Control Algorithm for Underwater Robots Using Fuzzy Logic

퍼지 로직을 이용한 수중 로봇의 새로운 경로 제어 알고리즘

  • 권경엽 (국립창원대학교 제어계측공학과 대학원) ;
  • 정태휘 (국립창원대학교 제어계측공학과 대학원) ;
  • 조중선 (국립창원대학교 제어계측공학과)
  • Published : 2005.08.01

Abstract

A fuzzy logic for collision avoidance of underwater robots is proposed in this paper. The VFF(Virtual Force Field) method, which is widely used in the field of mobile robots, is modified for application to the autonomous navigation of underwater robots. This Modified Virtual Force Field(MVFF) method using the fuzzy logic can be used in either track keeping or obstacle avoidance. Fuzzy logics are devised to handle various situations which can be faced during autonomous navigation of underwater robots. The obstacle avoidance algorithm has the ability to handle multiple static obstacles. Results of simulation show that the proposed method can be efficiently applied to obstacle avoidance of the underwater robots.

본 논문에서는 퍼지 로직을 이용한 수중 로봇의 충돌 회피를 제안하였다. VFF(Virtual Force Field) 방법은 이동 로봇 분야에서 널리 사용하고 있는 충돌 회피 알고리즘이다. 본 논문에서는 이를 수중 로봇의 자율 항해를 위한 형태로 변형시킨 Modified Virtual Force Field(MVFF)를 제시하였다. 보다 정교한 알고리즘을 위해서 퍼지 로직을 이용한 MVFF를 구성하였고, 이를 수중 로봇의 경로 유지와 충돌 회피에 적용하였다 퍼지 로직은 수중 로봇의 자율 항해 동안 직면하게 되는 다양한 상황들을 다루었다. 제안한 충돌 회피 알고리즘은 다수개의 고정 장애물에 대해서 좋은 성능을 제시하였다. 시뮬레이션 결과를 통해 제안된 방법이 수중 로봇의 충돌 회피에 효과적으로 적용될 수 있음을 보였다.

Keywords

References

  1. Jeen-Shing Wang; Lee, C.S.G., 'Self-adaptive recurrent neuro-fuzzy control of an autonomous underwater vehicle Robotics and Automation,' IEEE Transactions on,. 19, Issue. 2, pp. 283–295, April 2003
  2. Ishii, K., Nishida, S., Watanabe, K., Ura, T., 'A collision avoidance system based on self-organizing map and its application to an underwater vehicle Control,' Automation, Robotics and Vision, 2002. ICARCV 2002. 7th International Conference on, 2 ,Dec. 2002
  3. Sayyaadi, H., Ura, T., Fujii, T., 'Collision avoidance controller for AUV systems using stochastic real value reinforcement learning method,' Proceedings of the 39th SICE Annual Conference. International Session Papers ,pp. 165 -170, 26-28 July 2000
  4. Xuemin Liu, Liang Peng, Jiawei Li, Yuru Xu, 'Obstacle avoidance using fuzzy neural networks Underwater Technology,' 1998. Proceedings of the 1998 International Symposium on ,pp. 282-286, 15-17 April 1998
  5. A. A. Masoud and M. M. Bayoumi, 'Robot navigation using the vector potential approach,' Proc. of IEEE international Conference on Robotics and Automation, vol. 1, pp. 805-811, 1993
  6. Kwang-Young Im, Se-Young Oh, 'An extended virtual force field based behavioral fusion with neural networks and evolutionary programming for mobile robot navigation,'Evolutionary Computation, 2000, Proceedings of the 2000 Congress on, vol. 2, pp. 1238-1244, 16-19 July 2000
  7. Kwang-Young Im, Se-Young Oh, Seong-Joo Han, 'Evolving a modular neural network-based behavioral fusion using extended VFF and environment classification for mobile robot navigation Evolutionary Computation,' IEEE Transactions on ,Volume: 6 ,4 , pp.413-419, Aug. 2002
  8. J. Borenstein, 'Real-time obstacle avoidance for fast mobile robot,' IEEE Transactions on Systems, Man and Cybernetics, Vol. 19, No. 5, pp. 1179-1187, Sept./Oct., 1989 https://doi.org/10.1109/21.44033
  9. Joongseon Joh, Kyung-Yup Kwon and Sang-Min Lee, 'Collision Avoiding Navigation of Marine Vehicles Using Fuzzy Logic,' International Journal of Fuzzy Logic and Intelligent Systems, Vol. 2, No. 2, pp. 100-108, June 2002
  10. Donald P. Brutzman, 'A Virtual World for an Autonomous Underwater Vehicle,' dissertation, Naval Postgraduate school, Monterey California, 1994
  11. T . I.. Guidance and Control of Ocean Vehicles, John Wiley & Sons Ltd, Chichester, 1994
  12. A. J. Healey, and D. Lienard, 'Multivariable sliding mode control of autonomous diving and steering of underwater vehicles,' IEEE Journal of Ocean Engineering, OE-18,3, pp.327-339, 1993