용균과 DNA 패키징 유전자가 결핍된 온도 민감성 박테리오 파아지 람다 시스템에서 재조합 단백질 생산성에 미치는 온도의 영향

Temperature Effect on the Productivity of Recombinant Protein in a Lysis and DNA packaging-deficient and Temperature-sensitive Bacteriophage $\lambda$System

  • 오정석 (서울대학교 화학생물공학부) ;
  • 박태현 (서울대학교 화학생물공학부)
  • Oh, Jeong-Seok (School of Chemical and Biological Engineering, Seoul National University) ;
  • Park, Tai-Hyun (School of Chemical and Biological Engineering, Seoul National University)
  • 발행 : 2005.04.01

초록

본 연구는 장시간의 산업적인 연속 배양에서 문제가 되는 플라즈미드 불안정성을 극복하기 위해서 박테리오 파아지람다를 벡터로 이용하였다. 또한, 벡터의 안정성과 생산성을 높이기 위해서 용균과 ${\lambda}DNA$패키징이 결핍된 돌연변이 람다를 선별하였다. 이 돌연변이 람다는 온도 전환에 의해서 단백질이 생산되는 온도 민감성 돌연변이 cI유전자를 가지고 있기 때문에 재조합 단백질 생산, ${\lambda}DNA$ 복제,숙주 세포의 안정성 등이 lytic상태로의 전환을 유도하는 온도에 영향을 받게 된다. $36^{\circ}C$의 배양 온도는 lytic으로 전환이 잘 되지 않았고, $40^{\circ}C$ 이상의 배양 온도는 완전한 lytic상태를 유도하였다. 그러나$42^{\circ}C$의 배양 온도에서는 생산성이 감소되는 온도 저해 효과가 관찰되었다. 온도가 증가할수록 박테리오 파아지가 들어 있지 않는 대장균의 수는 증가하였고,이것은 새로운 파아지를 만들 수 있는 박테리오 파이지를 사용하여 재감염을 시키면 완화될 수 있을 것으로 예상된다. 결과적으로 단위 세포당 발현량은 $40^{\circ}C$에서 최대를 나타내었고, 안정성이나 총 발현량의 관점에서는 $38^{\circ}C$가 최적의 온도로 관찰되었다.

E. coli in combination with bacteriophage $\lambda$ was used to overcome the intrinsic plasmid instability that is frequently found in recombinant fermentation especially in long-term operation. In order to enhance the stability and productivity, the bacteriophage ${\lambda}NM1070$ was used in this study. It is a $\lambda$ mutant, which is deficient in the synthesis of protein related to DNA packaging and cell lysis. The ${\lambda}NM1070$ is also a temperature-sensitive mutant. To optimize the production of recombinant protein in this temperature-sensitive system, the temperature effects on growth and cloned gene expression were investigated for stable and efficient recombinant gene expression. The induction to the lytic state was not complete at $36^{\circ}C$ while the temperature above $40^{\circ}C$ induced the lytic state completely. However, the productivity was decreased at $42^{\circ}C$ by temperature inhibition. The L-free cell concentration increased with the increase of temperature until $40^{\circ}C$. In conclusion, ${\lambda}NM1070$ has the optimal temperature at $38^{\circ}C$ for stability and at $40^{\circ}C$ for expression.

키워드

참고문헌

  1. Imanaka, I. and S. Aiba (1981), A perspective on the application of genetic engineering stability of recombinant plasmid, Ann. NY Acad.Sci. 369,1-14 https://doi.org/10.1111/j.1749-6632.1981.tb14172.x
  2. Wu, K. and T. K. Wood (1994), Evaluation of the hok/sok killer locus for enhanced plasmid stability, Biotechnol. Bioeng. 44, 912-921 https://doi.org/10.1002/bit.260440807
  3. Doug, C. P., S. K. Craig, W. Kuowei, G. Kenn, and K. W. Thomas (1997), Combining the hok/sok, parDE, and pnd postsegregational killer loci to enhance plasmid stability, Appl. Environ. Microbiol. 63, 1917-1924
  4. Stephens, M. L. and G. Lyberatos (1988), Effect of cycling on the stability of plasmid-bearing microorganisms in continuous culture, Biotechnol. Bioeng. 31,464-469 https://doi.org/10.1002/bit.260310511
  5. Park, T. H., J. H. Seo, and H. C. Lim (1991), Two-stage fermentation with bacteriophage A as an expressionvector in Escherichia coli, Biotechnol. Bioeng. 37, 297-302 https://doi.org/10.1002/bit.260370402
  6. Padukone, N., S. W. Peretti, and D. F. Ollis (1992), Characterization of the mutant lytic state in lambda expression systems, Biotechnol.Bioeng. 36, 369-377
  7. Lin, C. S., B. Y. Chen, T. H. Park, and H. C. Lim (1998), Characterization bacteriophage $\lambda$Q mutant for stable and efficient production of recombinant protein in Escherichia coli system, Biotechnol. Bioeng. 57, 529-535 https://doi.org/10.1002/(SICI)1097-0290(19980305)57:5<529::AID-BIT4>3.0.CO;2-I
  8. Padukone, N., S. W. Peretti, and D. F. Ollis (1990), $\lambda$ vectors for stable cloned gene expression, Biotechnol. Prog. 6, 277-282
  9. Sugimoto, S., M. Yabuta, N. Kato, T. Seki, T. Yoshida, and H. Taguchi (1987), Hyperproduction of phenylalanine by Escherichia coli: application of a temperature-controllable expression vector carrying the repressor-promoter system of bacteriophage lambda, J. Biotechnol. 5, 237-253 https://doi.org/10.1016/0168-1656(87)90022-8
  10. Reinkainen, P., B. Sevella, M. Suutari, and P. Markkanen (1989), Analysis and modeling of the $\lambda$-pL promoter controlled expression of a cloned thermostable ${\alpha}$-amylase gene in Escherichia coli during batch cultivation,J. Biotechnol. 9, 221-234 https://doi.org/10.1016/0168-1656(89)90110-7
  11. Kim, T. S. and T. H. Park (2000), Optimization of bacteriophage $\lambda$Q'-containing recombinant Escherichia coli fermentation process, Bioprocess Eng. 23, 187-190
  12. Park, S. and T.H. Park (2000), Analysis of two-stage continuous operation of Escherichia coli containing bacteriophage $\lambda$ vector, Bioprocess Eng. 23, 557-563 https://doi.org/10.1007/s004499900194
  13. Simons, R. W., F. Houman, and N. Kleckner (1987), Improved signal and muticopy lac-based cloning vectors for protein and operon fusions, Gene 53, 85-96 https://doi.org/10.1016/0378-1119(87)90095-3