Cloning of a $\Delta5$ desaturase from Thraustochytrium sp. 26185 and Functional Expression in Pichia Pastoris

Thraustochytrium sp. 26185 균주에서의 $\Delta5$ desaturase 유전자 클로닝 및 Pichia pastoris 내에서의 기능적 발현

  • Chung Tae-Ho (Department of Biological and Chemical Engineering, College of Engineering, Inha University) ;
  • Lee Su-Jin (Department of Biological and Chemical Engineering, College of Engineering, Inha University) ;
  • Oh Hyo-Jeong (Department of Biological and Chemical Engineering, College of Engineering, Inha University) ;
  • Kim Geun-Joong (Department of Biological and Chemical Engineering, College of Engineering, Inha University) ;
  • Hur Byung-Ki (Department of Biological and Chemical Engineering, College of Engineering, Inha University)
  • 정태호 (인하대학교 공과대학 생물공학과 생물산업기술연구소) ;
  • 이수진 (인하대학교 공과대학 생물공학과 생물산업기술연구소) ;
  • 오효정 (인하대학교 공과대학 생물공학과 생물산업기술연구소) ;
  • 김근중 (인하대학교 공과대학 생물공학과 생물산업기술연구소) ;
  • 허병기 (인하대학교 공과대학 생물공학과 생물산업기술연구소)
  • Published : 2005.04.01

Abstract

Polyunsaturated fatty acids, that is PUFAs, are important constituents of membranes particularly found in the retina and central nervous system. In microorganism-based PUFAs biosynthesis, the genus Thraustochytrids is well evaluated for their potential as a promising candidate in the practical production of PUFAs, such as AA and DHA. In this study, we attempted to optimize a method of total nucleic acid extraction from this microorganism as a preliminary experiment. Using the extracted nucleic acid and degenerated primers for direct PCR, we isolated a $\Delta5$ desaturase gene that contained 1320-nucleotide and encoded 439 amino acids. This gene exhibited an expected function, when expressed in P. pastoris in the presence of appropriate exogenous substrate, as an evidence for $\Delta5$ desaturase activity (conversion of DGLA to AA). These results and information could provide a basis for the construction of engineered strains suitable for the practical production of PUFAs.

불포화지방산의 생합성능이 뛰어나다고 알려진 Thraustochytrids 균주 중 26185를 대상으로 arachidonic acid (AA C20:4 n-6)를 포함하는 PUFA 생산에 관여하는 유전자의 하나로서 key enzyme인 desaturase를 보다 효율적이고 안정적인 방법으로 cloning한 후 결과물을 분석하였다. 이를 위해 실험균주인 26185 균주를 대상으로 효율적인 전체 nucleic acids 추출법을 개발하였으며 관련된 기법의 활용을 통해 일반적으로 활용이 가능한 효과적이 방법임을 확인하였다. 확보된 유전체를 통한 direct PCR의 결과물을 기존에 알려진 cDNA 합성방법에 의한 결과물과 비교하였을 때 동일한 결과물임을 확인하였다. 이는 Thraustochytrids 관련 균주로부터 지방산 생합성에 관련된 효소군을 탐색하는 방법이 cDNA 합성방법에 의하지 않고 보다 직접적으로 진행될 수 있음을 제안할 수 있는 하나의 결과물로 생각되어진다. 획득된 유전자를 같은 진핵세포인 P. pastoris를 숙주로 하여 유전자를 도입하고 활성을 재현성 있게 규명함으로써 인공진화 혹은 재조합균체의 개발이 가능하다는 사실을 부분적으로 제시할 수 있었다.

Keywords

References

  1. Gill, I. and R. Valiverty (1997), Polyunsaturated fatly acids: occurrence, biological activities and application, Trends Biotechnol. 15. 401-409 https://doi.org/10.1016/S0167-7799(97)01076-7
  2. Dyerberg, J. Linolenate (1986), Derived Polyunsaturated Fatty Acids Prevention of Atherosclerosis, Nutrion Reviews 44(4), 125-134
  3. Tanaka, T., J. Hirano, and T. Funada (1992), Concentration of Docosahexaenoic acid in Glyceride by Hydrolysis of Fish Oil with Candida cylindracea Lipase, J. Am. Oil Chem. Soc. 69, 1210-1214. https://doi.org/10.1007/BF02637682
  4. Haraldsson, G. G., B. o. Gudmundsson, and o. Almarsson (1993), The Preparation of Homogeneous Triglycerides of Eicosapentaenoic Acid and Docosahexaenoic Acid by Lipase, Tetrahedron Lett. 34(36), 5791-5794 https://doi.org/10.1016/S0040-4039(00)73862-7
  5. Yazawa, K., Okazaki, N., Watanabe, K., Ishikawa, C., Inoue, Nwnao, N. and Kondo, K (1998), Production of eicosapentaenoic acid by marine bacteria, Journal of Biochemistry 103, 5-7
  6. Metz, J. G., P. Roessler, D. Facciotti, et al. (2001), Polyketide Synthases Produce Polyunsaturated Fatty Acids in Both Prokaryotes and Eukaryotes, Science 293, 290-293 https://doi.org/10.1126/science.1059593
  7. Ward, O. P., P. K. Bajapai, and P. Bajapai (1991), Arachidonic acid production by fungi, Appl. Environ, Microbial. 57(4), 1255-1258
  8. Shimizu, S. and J. Ogawa (1997), Prodution of useful fatty acids by microbial processes, Recent Res. Devel. in Oil Chem. 1, 267-286
  9. Ha, S. J., C. S. Park, and Y. W. Ryu (2004), Selection of Organic Nitrogen Source and Optimization of Culture Condition for the Production of Arachidonic Acid from Motierella alpina, Korean J.Biotechnol. Bioeng. 19(1), 78-83
  10. Zhoa, H. and Z. Chen (2002), Direction evolution of enzymes and pathways for industrial biocatalysis, Biochemical engineering, 104-110
  11. Kamada, N., J. Ogawa, and S. Shimizu (1999), Production of 8, 11-Cis Eicosadienoic Acid by a $\Delta$5 and $\Delta$12 Desaturase-defective Mutant Derived from the Arachidonic Acid-Producing Fungus Mortierella alpina 1S-4, JAOCS 76, 1269-1274 https://doi.org/10.1007/s11746-999-0138-8
  12. Hong, H., N. D. Dalta, W. Reed, and X. Qiu (2002), High-level production ganuna-linolenic acid in Brassica juncea using a $\Delta$6 desaturase from Pythium irregulare, Plant Physiol. 129, 354-362 https://doi.org/10.1104/pp.001495
  13. Xiao, Q. (2003), Biosynthesis of docosahexaenoic acid (DHA, 22:6-4, 7,10,13,16,19): two distinct pathways, Prostaglaruiines, Leukotrienes and Essential Fatty Acids 68, 181-186 https://doi.org/10.1016/S0952-3278(02)00268-5
  14. Xiao. Q., H. Hong, L. M. Samuel (2001), Identification of a $\Delta$4 Fatty Acid Desaturase from Thraustochytrium sp. Involved in the Biosynthesis of Docosahexanoic Acid by Heterologous Expression in Saccharomyces cerevisiae and Brassica juncea, The Journal of Biological Chemistry 276, 31561-31566 https://doi.org/10.1074/jbc.M102971200
  15. Weete, J. D. and R. Dute (1997), Lipids and Ultrastructure of Thraustochytrium sp. ATCC 26185, Lipids 32(8), 839-845 https://doi.org/10.1007/s11745-997-0107-z
  16. Joan, L. and J. M. Cregg (2000), Heteologous protein expression in the methylotrophic yeast Pichia pastrois, FEMS Microbiology Reviews 24, 45-66 https://doi.org/10.1111/j.1574-6976.2000.tb00532.x
  17. Helmut, B. and J. Zeyer (2003), mRNA Extraction and Reverse Transcription-PCR Protocol for Detection of nifH Gene Expression by Azotobacter vinelandii in Soil, Appl. Environ. Microbiol. 69, 1928-1935 https://doi.org/10.1128/AEM.69.4.1928-1935.2003
  18. http://www.tcd.ie/Genetics/staff/Noel.Murphy/recombinant/ (2003)
  19. Guy, L. and C. R. Claude (1984), J. Lipid Reaseach 25, 1391-1396
  20. Caiqing, M. and B. Rinkevich (2001), A simple, Reliable, and Fast Protocol for Thraustochytrid DNA Extraction, Mar. Biotechnol. 3, 100-102 https://doi.org/10.1007/s101260000069
  21. Oh, H. J. (2004), Study on the synthetic pathway and related genes of PUFA in a hyper-producing strain Thraustochytrium aureum BK1, M. S. Thesis, Inha university, Incheon
  22. Domergue, F., U. Za!rringer, and E. Heinz (2002), Cloning and functional characterization of Phaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acid biosynthesis, Eur. J.Biochem. 269, 4105-4113 https://doi.org/10.1046/j.1432-1033.2002.03104.x
  23. Jennifer, M. and P. MuKerji (1999), Identification and charaterization of an enzyme involved in the elongation of n-6 and n-3 polyunsaturated fatty acids, PNAS 97(15), 8384-8289
  24. Huang, Y. S., P. Mukerji, and S. Knutzon (1999), Cloning of $\Delta$ 12-and $\Delta$6-Desaturase from Mortierella alpina and Recombinant Production of v-Linolenic Acid in Saccharomyces cerevisae, Lipids 34(7), 649-659 https://doi.org/10.1007/s11745-999-0410-8