Biohydrogen Production from Carbon Monoxide and Water by Rhodopseudomonas palustris P4

  • Oh You-Kwan (Department of Chemical Engineering, Pusan National University, Institute for Environmental Technology and Industry, Pusan National University) ;
  • Kim Yu-Jin (Department of Chemical Engineering, Pusan National University, Institute for Environmental Technology and Industry, Pusan National University) ;
  • Park Ji-Young (Institute for Environmental Technology and Industry, Pusan National University) ;
  • Lee Tae Ho (Institute for Environmental Technology and Industry, Pusan National University) ;
  • Kim Mi-Sun (Biomass Research Team, Korea Institute of Energy Research) ;
  • Park Sunghoon (Department of Chemical Engineering, Pusan National University, Institute for Environmental Technology and Industry, Pusan National University)
  • Published : 2005.06.01

Abstract

A reactor-scale hydrogen (H2) production via the water-gas shift reaction of carbon monoxide (CO) and water was studied using the purple nonsulfur bacterium, Rhodopseudomonas palustris P4. The experiment was conducted in a two-step process: an aerobic/chemoheterotrophic cell growth step and a subsequent anaerobic $H_2$ production step. Important parameters investigated included the agitation speed. inlet CO concentration and gas retention time. P4 showed a stable $H_2$ production capability with a maximum activity of 41 mmol $H_2$ g $cell^{-1}h^{-1}$ during the continuous reactor operation of 400 h. The maximal volumetric H2 production rate was estimated to be 41 mmol $H_2 L^{-1}h^{-1}$, which was about nine-fold and fifteen-fold higher than the rates reported for the photosynthetic bacteria Rhodospirillum rubrum and Rubrivivax gelatinosus, respectively. This is mainly attributed to the ability of P4 to grow to a high cell density with a high specific $H_2$ production activity. This study indicates that P4 has an outstanding potential for a continuous H2 production via the water-gas shift reaction once a proper bioreactor system that provides a high rate of gas-liquid mass transfer is developed.

Keywords

References

  1. Barik, S., R. E. Corder, Clausen, E. C., and J. L. Gaddy (1987) Biological conversion of coal synthesis gas to methane. Energy Prog. 7: 157-160
  2. Liu, Z.-W., K.-W. Jun, H.-S. Rho, and S.-E. Park (2002) Hydrogen production for fuel cells through methane reforming at low temperatures. J. Power Sources 111: 283-287 https://doi.org/10.1016/S0378-7753(02)00317-8
  3. Ferry, J. G. (1995) CO dehydrogenase. Annu. Rev. Microbiol. 49: 305-333 https://doi.org/10.1146/annurev.mi.49.100195.001513
  4. Jung, G. Y., H. O. Jung, J. R. Kim, Y. Ahn, and S. Park (1999) Isolation and characterization of Rhodopseudomonas palustris P4 which utilizes CO with the production of $H_2$. Biotechnol. Lett. 21: 525-529 https://doi.org/10.1023/A:1005560630351
  5. Klasson, K. T., K. M. O. Lundback, E. C. Clausen, and J. L. Gaddy (1993) Kinetics of light limited growth and biological hydrogen production from carbon monoxide and water by Rhodospirillum rubrum. J. Biotechnol. 29: 177-188 https://doi.org/10.1016/0168-1656(93)90049-S
  6. Uffen, R. L. (1976) Anaerobic growth of Rhodopseudomonas species in the dark with carbon monoxide and energy substrate. Proc. Natl. Acad. Sci. USA 73: 3298-3302 https://doi.org/10.1073/pnas.73.9.3298
  7. Bhatnagar, L., J. A. Krzycki, and J. G. Zeikus (1987) Analysis of hydrogen metabolism in Methanosarcina barkeri: Regulation and role of CO-dehydrogenase in $H_2$ production. FEMS Microbiol. Lett. 41: 337-343 https://doi.org/10.1111/j.1574-6968.1987.tb02223.x
  8. Wolfrum, E. J. and A. S. Watt (2002) Bioreactor design studies for a hydrogen-producing bacterium. Appl. Biochem. Biotechnol. 99: 611-625 https://doi.org/10.1385/ABAB:98-100:1-9:611
  9. Cowger, J. P., K. T. Klasson, M. D. Ackerson, E. C. Clausen, and J. L. Gaddy (1992) Mass-transfer and kinetic aspects in continuous bioreactors using Rhodospirillum rubrum. Appl. Biochem. Biotechnol. 34/35: 613-624 https://doi.org/10.1007/BF02920582
  10. Wolfrum, E. J. and P. F. Weaver (1999) Bioreactor development for biological hydrogen production. Proceedings of the 1999 US DOE Hydrogen Program Review (NREL/CP- 570-26938)
  11. Lee, T. H., J.-Y. Park, and S. Park (2002) Growth of Rhodopseudomonas palustris under phototrophic and nonphototrophic conditions and its CO-dependent $H_2$ production. Biotechnol. Lett. 24: 91-96 https://doi.org/10.1023/A:1013887715895
  12. Oh, Y.-K., E.-H. Seol, E. Y. Lee, and S. Park (2002) Fermentative hydrogen production by a new chemoheterotrophic bacterium Rhodopseudomonas palustris P4. Int. J. Hydrogen Energy 27: 1373-1379 https://doi.org/10.1016/S0360-3199(02)00100-3
  13. Oh, Y.-K., E.-H. Seol, M.-S. Kim, and S. Park (2004) Photoproduction of hydrogen from acetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris P4. Int. J. Hydrogen Energy 29: 1115-1121
  14. Jung, G. Y., J. R. Kim, H. O. Jung, J.-Y. Park, and S. Park (1999) A new chemoheterotrophic bacterium catalyzing water-gas shift reaction. Biotechnol. Lett. 21: 869-873 https://doi.org/10.1023/A:1005599600510
  15. Jung, G. Y., J. R. Kim, J.-Y. Park, and S. Park (2002) Hydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. Int. J. Hydrogen Energy 27: 601-610 https://doi.org/10.1016/S0360-3199(01)00176-8
  16. Oh, Y.-K., E.-H. Seol, J. R. Kim, and S. Park (2003) Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. Int. J. Hydrogen Energy 28: 1353-1359 https://doi.org/10.1016/S0360-3199(03)00024-7
  17. Kim, J. R., Y.-K. Oh, Y. J. Yoon, E. Y. Lee, and S. Park (2003) Oxygen sensitivity of carbon monoxide-dependent hydrogen production activity in Citrobacter sp. J. Microbiol. Biotechnol. 13: 717-724
  18. Masuko, T., A. Minami, N. Iwasaki, T. Majima, S. Nishimura, and Y. C. Lee (2005) Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal. Biochem. 339: 69-72 https://doi.org/10.1016/j.ab.2004.12.001
  19. Oh, Y.-K., M. S. Park, E.-H. Seol, S.-J. Lee, and S. Park (2003) Isolation of hydrogen-producing bacteria from granular sludge of an upflow anaerobic sludge blanket reactor. Biotechnol. Bioprocess Eng. 8: 54-57 https://doi.org/10.1007/BF02932899
  20. Oh, Y.-K., Y.-J. Kim, Y. Ahn, S.-K. Song, and S. Park (2004) Color removal of real textile wastewater by sequential anaerobic and aerobic reactors. Biotechnol. Bioprocess Eng. 9: 419-422 https://doi.org/10.1007/BF02933068
  21. Lee, E. Y., J. M. Kang, and S. Park (2003) Evaluation of transformation capacity for degradation of ethylene chlorides by Methylosinus trichosporium OB3b. Biotechnol. Bioprocess Eng. 8: 309-312 https://doi.org/10.1007/BF02949224
  22. He, Y., T. Gaal, R. Karls, T. J. Donohue, R. L. Gourse, and G. P. Roberts (1999) Transcription activation by CooA, the CO-sensing factor from Rhodospirillum rubrum. The interaction between CooA and the C-terminal domain of the $\alpha$ subunit of RNA polymerase. J. Biol. Chem. 274: 10840-10845 https://doi.org/10.1074/jbc.274.16.10840
  23. Maness, P.-C. and P. F. Weaver (2001) Evidence for three distinct hydrogenase activities in Rhodospirillum rubrum. Appl. Microbiol. Biotechnol. 57: 751-756 https://doi.org/10.1007/s00253-001-0828-0
  24. Larimer, F. W., P. Chain, L. Hauser, J. Lamerdin, S. Malfatti, L. Do, M. L. Land, D. A. Pelletier, J. T. Beatty, A. S. Lang, F. R. Tabita, J. L. Gibson, T. E. Hanson, C. Bobst, J. L. T. Torres, C. Peres, F. H. Harrison, J. Gibson, and C. S. Harwood (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nature Biotechnol. 22: 55-61 https://doi.org/10.1038/nbt923
  25. Klasson, K. T., A. Gupta, E. C. Clausen, and J. L. Gaddy (1993) Evaluation of mass-transfer and kinetic parameters for Rhodospirillum rubrum in a continuous stirred tank reactor. Appl. Biochem. Biotechnol. 39/40: 549-557 https://doi.org/10.1007/BF02919017
  26. Bredwell, M. D., P. Srivastava, and R. M. Worden (1999) Reactor design issues for synthesis-gas fermentations. Biotechnol. Prog. 15: 834-844 https://doi.org/10.1021/bp990108m
  27. He, Y., D. Shelver, R. L. Kerby, and G. P. Roberts (1996) Characterization of a CO-responsive transcriptional activator from Rhodospirillum rubrum. J. Biol. Chem. 271: 120-123 https://doi.org/10.1074/jbc.271.1.120