Measurement of Ground Subsidence in Mokpo Area from Radar Intrerferometry

영상레이더를 이용한 목포 지반침하 관측

  • Kim Sang-Wan (Division of Marine Geology and Geophysics, Univ.) ;
  • Kim Chang-Oh (Dept. of Geoinformation Eng. & Geohazard Information Lab., Sejong University) ;
  • Won Joong-Sun (Dept. of Earth System Sciences, Yonsei University) ;
  • Kim Jeong Woo (Dept. of Geoinformation Eng. & Geohazard Information Lab., Sejong University)
  • 김상완 (세종대학교 지구정보공학과, 지질재해정보연구실) ;
  • 김창오 (세종대학교 지구정보공학과, 지질재해정보연구실) ;
  • 원중선 (연세대학교 지구시스템과학과) ;
  • 김정우 (세종대학교 지구정보공학과, 지질재해정보연구실)
  • Published : 2005.08.01

Abstract

Mokpo city is a coastal city located at the south western coast of the Korean Peninsula. Large regions within Mokpo are subjected to significant subsidence because about $70\%$ of the city area is a reclaimed land from the sea. Although no confidential quantitative measurements are available up to the present, the subsidence rate is as much as several cm per year. In this study, we aimed to estimate the subsidence rate over Mokpo city by using twenty-six JERS-1 SAR dataset from September 1992 to October 1998. Several tens of differential interferograms were processed from JERS-1 dataset and STRM 3-arc DEM. The results indicate continuous subsidence in Dongmyung-dong, Hadang-dong and Wonsan-dong in city, and the subsidence velocity reach over 4 cm/yr in the most highly sinking area. For facilitating the analysis of time-varying surface change, we also carried out an interferometric SAR time series analysis using permanent scatterer and consequently determined space-time maps of surface deformation at each acquisition time of JERS- 1 SAR.

목포시는 한반도 서남쪽에 위치한 연안도시로, 시 면적의 약 $70\%$가 바다를 매립하여 이루어진 도시이다. 매립에 의한 지반침하 현상이 여러 지역에서 빈번하게 보고되고 있음에도 불구하고 정량적인 관측이 거의 이루어지지 않았다. JERS-1 L밴드 SAR 위성에서 얻어진 26개의 영상을 이용하여 1992년 9월 25일부터 1998년 10월 4일 사이 목포시에서 발행한 침하량을 측정하였다. JERS-1 SAR 영상과 SRTM 3초 DEM을 이용하여 60여개의 간섭도를 작성하였다. 간섭도 관측결과 동명동, 하당동, 원산동 일대에서 지속적인 침하가 발생하였으며, 주요 침하 지역에서 침하속도는 4 cm/yr를 넘는 곳도 있다. 시간에 따른 침하 양상에 대한 분석을 보다 용이하게 하기 위해 고정산란체(PS)를 이용한 분석기법도 적용하였으며, 결과적으로 JERS-1 SAR 자료의 각 관측 시기에 대한 지표변위도를 구하였다.

Keywords

References

  1. 김상완 (2004) L-밴드 영상레이더 위상간섭기법을 이용한 백두산 및 부산지역의 지표면 변위 관측. 연세대학교 박사학위 논문, 157p
  2. 이창욱 (2002) L-밴드 JERS-1 SAR를 이용한 매립지 지반침하 관측. 연세대학교 석사학위 논문, 84p
  3. 정한철, 김상완, 김복철, 민경덕, 원중선 (2004) JERS-1 SAR를 이용한 가은 폐탄광 지역 지반침하 관측. 자원환경지질, v. 37, p. 509-519
  4. ASF/JPL (1994) JERS-1 SAR Data Quality Assessment, http://www.asf.alaska.edu
  5. Buckley, S. (2000) Radar Interferometry Measurement of Land Subsidence. The University of Texas at Austin, Ph. D. Dissertation
  6. Burgmann, R., Rosen, P.A. and Fielding E.J. (2000) Synthetic Aperture Radar Interferometry to Measure Earth's Surface Topography and its Deformation. Annu. Rev. Earth Planet. Sci., v. 28, p. 169-209 https://doi.org/10.1146/annurev.earth.28.1.169
  7. Colesanti, C, Fettetti, A., Prati, C. and Rocca, F. (2003) Monitoring landslides and tectonic motions with the Permanent Scatterers Technique. Engineering Geology, v. 68, p. 3-14 https://doi.org/10.1016/S0013-7952(02)00195-3
  8. Ferretti, A., Prati, C. and Rocca, E (2001) Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens., v. 39, p. 8-20 https://doi.org/10.1109/36.898661
  9. Ferretti, A., Prati, C. and Rocca, F. (2000) Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry. IEEE Trans. Geosci. Remote Sens., v. 38, p. 2,202-2,212 https://doi.org/10.1109/36.868878
  10. Fruneau, B. and Sarti, E (2000) Detection of ground subsidence in the city of Paris using radar interferometry: isolation of deformation from atmospheric artifacts using correlation. Geophys. Res. Lett., v. 27, p. 3981-3984 https://doi.org/10.1029/2000GL008489
  11. Gabriel, A.K., Goldstein, R.M. and Zebker, H.A. (1989) Mapping small elevation changes over large areas: Differential radar interferometry. J. Geophys. Res., v. 94, p. 9183-9191 https://doi.org/10.1029/JB094iB07p09183
  12. Ghiglia, D.C. and Pritt, M.D., 1998, Two-dimensional phase unwrapping : Theory, Algorithms, and Software, Wiley, New York
  13. Goldstein, R.M. and Werner, C. (1998) Radar interfer-ogram filtering for geophysical application. Geoph. Res. Letters, v. 25, p. 4035-4038 https://doi.org/10.1029/1998GL900033
  14. Kim, S.W and Won, J.S. (2003) Measurements of Soil Compaction Rate by Using JERS-1 SAR and a Prediction Model. IEEE Trans. Geosci. Remote Sens., v. 41, p. 2683-2686 https://doi.org/10.1109/TGRS.2003.817185
  15. Kim, S.W, Lee, C.W, Song, K.Y., Min, K.D. and Won, J.S. (2005) Application of L-band differential SAR interferometry to subsidence rate estimation in reclaimed coastal land. International Journal of Remote Sensing, v. 26, p. 1363-1381 https://doi.org/10.1080/01431160512331326620
  16. Massonnet, D. and Feigl, K.L. 1998, Radar interferometry and its application to changes in the earth's surface. Review of Geophysics, v. 36, p. 441-500 https://doi.org/10.1029/97RG03139
  17. Massonnet, D., Rossi, M., Carmona, C, Adragna, E, Pelt-zer, G., Fiegl, K. and Rabaute, T. (1993) The displacement field of the Landers earthquake mapped by radar interferometry. Nature, v. 364, p. 138-142 https://doi.org/10.1038/364138a0
  18. Nakagawa, H., Murakami, M., Fujiwara, S. and Tobita, M. (2000) Land Subsidence of the Northern Kanto Plains caused by Ground Water Extraction detected by JERS-1 SAR Interferometry. IGARSS'00, Hawaii, USA, p. 2,233-2,235
  19. Rabus, B., Eineder, M., Roth, A. and Bamler, R. (2003) The shuttle radar topography mission-a new class of digital elevation models acquired by spaceborne radar. ISPRS journal of Photogrammetry & Remote Sensing, v. 57, p. 241-262 https://doi.org/10.1016/S0924-2716(02)00124-7
  20. Raymond, D. and Rudant, J.P. (1997) ERS1-SAR interferometry : potential and limits for mining subsidence detection. Proceedings. 3rd ERS Symp. on Space at the service of our Environment, Florence, Italy, p. 541-544
  21. Reigber, C, Xia, Y., Kaufmann, H., Timmen, T, Bodech-tel, J. and Frei M. (1996) Impact of Precise orbits on SAR interferometry. Proc. FRINGE 96 Workshop, Zurich, Switzerland
  22. Scharroo, R. and Visser, EN.A.M. (1998) Precise orbit determination and gravity field improvement for the ERS satellites. J. Geophys. Res., v. 103, p. 8113-8127 https://doi.org/10.1029/97JC03179
  23. Shimada, M. (1996) Radiometric and geometric calibration of JERS-1 SAR. Adv. Space Res., v. 17, p. 79-88
  24. Williams, S., Bock, Y. and Pang, R (1998) Integrated satellite interferometry : Tropospheric noise, GPS estimates and implications for interferometric synthetic aperture radar products. J. Geophys. Res., v. 103, p. 27,051-27,067 https://doi.org/10.1029/98JB02794