높은 신뢰도의 네트워크 설계를 위한 GA 기반 두 단계 방법

GA-based Two Phase Method for a Highly Reliable Network Design

  • 조정복 (동서대학교 인터넷공학부)
  • 발행 : 2005.08.01

초록

일반적으로 네트워크 설계 문제는 네트워크의 크기가 늘어남에 따라 지수적으로 복잡도가 증가하여 전통적인 방법으로는 풀이하기 힘든 NP-hard 조합 최적화 문제 중의 하나로 분류될 수 있다. 본 논문에서는 네트워크 신뢰도 제약을 고려하면서 네트워크 구축비용을 효과적으로 최소화하는, 높은 신뢰도의 네트워크 토폴로지 설계 문제를 풀기 위해 스패닝 트리를 효율적으로 표현할 수 있는 $Pr\ddot{u}fer$수(PN) 기반의 진화 연산법과 2-연결성을 고려하는 휴리스틱 방법으로 구성된 두 단계의 효율적인 해법을 제안한다. 즉, 먼저 스패닝 트리를 찾아내기 위해 진화 연산법 중에 보편적으로 널리 알려져 있는 유전자 알고리즘(GA)을 이용하고 그 다음으로 첫 번째 단계에서 발견한 스패닝 트리에 대해 최적의 네트워크 토폴로지를 찾기 위해서 2-연결성을 고려한 휴리스틱 방법을 적용한다. 마지막으로 수치예의 결과를 통해 제안한 해법의 성능에 대해서 살펴보도록 한다.

Generally, the network topology design problem, which is difficult to solve with the classical method because it has exponentially increasing complexity with the augmented network size, is characterized as a kind of NP-hard combinatorial optimization problem. The problem of this research is to design the highly reliable network topology considering the connection cost and all-terminal network reliability, which can be defined as the probability that every pair of nodes can communicate with each other. In order to solve the highly reliable network topology design problem minimizing the construction cost subject to network reliability, we proposes an efficient two phase approach to design reliable network topology, i.e., the first phase employs, a genetic algorithm (GA) which uses $Pr\ddot{u}fer$ number for encoding method and backtracking Algorithm for network reliability calculation, to find the spanning tree; the second phase is a greedy method which searches the optimal network topology based on the spanning ree obtained in the first phase, with considering 2-connectivity. finally, we show some experiments to demonstrate the effectiveness and efficiency of our two phase approach.

키워드

참고문헌

  1. K.K. Aggarwal and S. Rai, 'Reliability evaluation of computer-communication networks', IEEE Trans. Rel., vol.R-30, no.1, pp.32-35, 1981 https://doi.org/10.1109/TR.1981.5220952
  2. K.K. Aggarwal, Y.C. Chopra, and J.S. Bajwa, 'Topological layout of links for optimising the overall reliability in a computer communication', Microelectronics & Reliability, vol.22, no.3, pp.347-351, 1982 https://doi.org/10.1016/0026-2714(82)90007-5
  3. M.M. Atiqullah and S.S. Rao, 'Reliability optimization of communication networks using simulated annealing, Microelectronics & Reliability, vol.33, no.9, pp.1303-1319, 1993 https://doi.org/10.1016/0026-2714(93)90132-I
  4. M. Ball and R.M. Van Slyke, 'Backtracking algorithms for network reliability analysis', Annals of Discrete Mathematics, vol.1, pp.49-64, 1977 https://doi.org/10.1016/S0167-5060(08)70726-X
  5. H. Cancela and M.E. Khadiri, 'A recursive variance-reduction algorithm for estimating communication-network reliability', IEEE Trans. Rel., vol.44, no.4, pp.595-602, 1995 https://doi.org/10.1109/24.475978
  6. Y.C. Chopra, B.S. Sohi, R.K Tiwari, and K.K. Aggarwal, 'Network topology for maximizing the terminal reliability in a computer communication networks', Microelectronics & Reliability, vol.24, pp.911-913, 1984 https://doi.org/10.1016/0026-2714(84)90019-2
  7. D.L. Deeter and A.E. Smith, 'Economic design of reliable network', IIE Trancstion, vol. 30, no.12, pp.1161-1174, 1999
  8. B. Dengiz, F. Altiparmak, and A.E. Smith, 'Efficient optimization of all-terminal reliable networks using evolutionary approach', IEEE Trans. Rel., vol.46, no: 1, pp.18-26, 1997 https://doi.org/10.1109/24.589921
  9. B. Dengiz, F. Altiparmak, and A.E. Smith, 'Local search genetic algorithm for optimal design of reliable networks', IEEE Trans. Evolutionary Computation, vol.1, no.3, pp.179-188, 1997 https://doi.org/10.1109/4235.661548
  10. P.C. Fetterlof and G. Anandalingam, 'Optimal design of LAN- WAN internetworks: an approach using simulated annealing', Annals of Opers. Research, vol.36, pp.275-298, 1992 https://doi.org/10.1007/BF02094334
  11. G.S. Fishman, 'A comparison of four monte carlo methods for estimating the probability of s-t connectedness', IEEE Trans. Rel., vol.R-35, no.2, pp.145-155, 1986
  12. M. Gen and R. Cheng, 'Genetic Algorithms and Engineering Design', John Wiley & Sons, New York, 1997
  13. M. Gen and R. Cheng, 'Genetic Algorithms and Engineering Optimization', John Wiley & Sons, New York, 2000
  14. F. Glover, M. Lee, and J. Ryan, 'Least-cost network topology design for a new service: an application of a tabu search', Annals of Opers. Research, vol.33, pp.351-362, 1991 https://doi.org/10.1007/BF02073940
  15. C. Hanzhong and L. Dongkui, 'A new algorithm for computing the reliability of complex networks by the cut method', Microelectronics & Reliability, vol.34, no.1, pp.175-177, 1994 https://doi.org/10.1016/0026-2714(94)90489-8
  16. R.H. Jan, F.J. Hwang, and S.T. Chen, 'Topological optimization of a communication network subject to a reliable constraint', IEEE Trans. Rel., vol.42, no.1, pp.63-70, 1994 https://doi.org/10.1109/24.210272
  17. S.J. Kamat and M.W. Riley, 'Determination of reliability using event-based monte carlo simulation', IEEE Trans. Rel., vol.R-24, no.1, pp.73-75, 1975 https://doi.org/10.1109/TR.1975.5215337
  18. S.J. Koh and C.Y. Lee, 'A tabu search for the survivable fiber optic communication network design', Comput. & Indust. Eng., vol.28, no.4, pp.689-700, 1995 https://doi.org/10.1016/0360-8352(95)00036-Z
  19. H. Kumamoto, K. Tanaka, and K. Inoue, 'Efficient evaluation of system reliability by monte carlo method, IEEE Trans. Rel., vol.R-26, no.5, pp.311-315, 1977 https://doi.org/10.1109/TR.1977.5220181
  20. A. Kumar, R.M. Pathak, Y.P. Gupta, and H.R. Parsaei, 'A genetic algorithm for distributed system topology design', Comput. & Indust. Eng., vol.28, no. 3, pp.659-670, 1995 https://doi.org/10.1016/0360-8352(94)00218-C
  21. A. Kumar, R.M. Pathak, and Y.P. Gupta, 'Genetic-algorithm-based reliability optimization for computer network expansion' , IEEE Trans. Rel., vol.44, no.1, pp.63-72, 1995 https://doi.org/10.1109/24.376523
  22. C. Uu, M. Dai, X.Y. Wu, and W.K. Chen, 'A network overall reliability algorithm', Proc. Neural, Parallel & Scientific Computations, pp.287-292, Atlanta, 1995
  23. D. Mandaltsis and J.M. Kontolen, 'Overall reliability determination of computer networks with hierarchical routing strategies', Microelectronics & Reliability, vol.27, no.1, pp.129-143, 1987 https://doi.org/10.1016/0026-2714(87)90627-5
  24. S. Pierre, M. Hyppolite, J. Bourjolly, and O. Dioume, 'Topological design of computer communication networks using simulated annealting' , Eng. Applications of Artificial Intelligence, vol.8, no.1, pp.61-69, 1995 https://doi.org/10.1016/0952-1976(94)00041-K
  25. S. Skiena, 'Implementing Discrete Mathematics Combinatorics and Graph Theory with Mathematica', Addison-Wesley, Reading, MA, 1990
  26. A.N. Venetsanopoulos and I. Singh, 'Topological optimization of communication networks subject to reliability constralnts', Problem of Control and Information Theory, vol.15, pp.63-78, 1986
  27. R.S. Wilkov, 'Design of computer networks based on a new reliability measure', Sym. Computer-communications Networks and Teletraffic, Ploytechnic Institute of Brooklyn, pp.371-384, 1972
  28. M.S. Yeh, J.S. Lin, and W.C. Yeh, 'A new monte carlo methcx.l for estimating network reliability', Proc. 16th Inter. Conf. on Comput. & Indust. Eng., pp.723-726, 1994
  29. G. R. Raidl and B. A. Julstrom, 'Edge sets: an effective evolutionary coding of spanning trees', IEEE Trans. on Evol. Compu., Vol.7, No.3, pp.225-239, June, 2003 https://doi.org/10.1109/TEVC.2002.807275
  30. F. Altiparmak, M. Gen, B. Dengiz, and A. E. Smith, 'A network-based genetic algorithm for design of communication networks,' Journal of Society of Plant Engineers Japan, Vol. 15, No, 4, 184-190, Feb. 2004