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Change-point Estimation with Loess of Meansl)

Jaehee Kim?2)

Abstract

We suggest a functional technique with loess smoothing for estimating the
change-point when there is one change-point in the mean model. The proposed
change-point estimator is consistent. Simulation study shows a good performance of
the proposed change-point estimator in comparison with other parametric or
nonparametric change-point estimators.
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1. Introduction

Almost all classic statistical inference is based upon the assumption that there exists a
fixed probabilistic mechanism of data generation. Unlike classic statistical inference, we
consider about the statistical analysis of data about complex objects with more than one
probabilistic mechanism of data generation. Also more than one data generation process is the
most important characteristic of complex systems. Given a sequence of random variables,
suppose that at some unknown point in the sequence the process governing their distribution
changes abruptly, and consider the problem of the unknown change-point estimation.

The problem of concern is to detect changes of probabilistic characteristics of data from the
whole observed sample. We are dealing with change-point problem in the mean change with
only one change-point. Any problem of detection of changes in probabilistic characteristics can
be reduced to the problem of the detection the change of the mathematical expectation for
some diagnostic sequence formed from the initial sequence. Therefore it is possible to
formulate the problem with comparing each two parts.

Let X;, X5, -+, X, be independent variables with

X, Xy, -+, X, identically distributed with cdf F, (11
X, 11,7+, X, identically distributed with cdf G.

The unknown parameter 7T is the change-point to be estimated.
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In section 2, some previous change-point estimation methods are explained to understand
the change-point problem approach. Section 3 contains the proposed change-point estimation
method with loess. Section 4 gives some results of comparison simulation studies. And section
4 presents concluding remarks.

2. Parametric Change—point Estimation

Hinkley(1970) used the maximum likelihood to estimate the change-point where F and G
are from the same parametric family. The model is of the form

_[6,(t) +e t=1,--,7
Xt—{el(t)-l-et t=7+1,,n @1

where {et} is a sequence of uncorrelated error terms with zero mean, 6(t) is a continuous
mean function and the change-point 7 is unknown. A generalization (2.1) to (p+1)
submodels with p unknown change-points can be considered as an extensive model. Let
(Xl,"',Xn) be a sequence of independent continuous random variables such that X, has
probability density function f(z,8,) (i =1,---,7) and X; has the probability density function
f(z,0,) (i=7+1,--,n), where 6, and 6, are known (6= 6,) but 7 is unknown. To

obtain the maximum likelihood estimate 7A‘, the log likelihood function L(t) is considered
where

L(t) = Ylogf(z,0,) + 3 10g£(2.,6,).

i=t+
A more convenient form for L(t) is obtained by defining the log likelihood increments

Uj=log f(X;6)~log f(X;6). (22)

There the maximum likelihood estimate 7 is the value which maximizes the sequence of
t

partial sums Y, Uj.
i=1

Hinkley(1972) generalized this method to the case where 7 and G may be arbitrary known

distributions, or alternatively where a sensible discriminant function is known. The model may

be written as

F(z,0) i=1,---,)\
G(z,) i=A+1-,n

Each random variable X; may be multidimensional, as may be 6 and . For fixed values

2.3)

P(X<2)={

of 9 and v, the log likelihood function can be written as
_L(T) = Zl()(;) + Ec (X;) (2.4)
=1 . 1=1

where
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1(X;) = logldF (X, 0) dG(X, )}, c(X;) =log dG(X, ). (25)
When 6 and ¢ are unknown, the log likelihood can be very inconvenient for actual data
analysis so that a general class of discriminate functions d(X) are considered to discriminate

between F(z,0) and G(z,%), so that D(7) = Zd(X]) corresponds to L(7) in (2.4).
1=1

In the normal case with both 6, and 6, are unknown, the log-likelihood becomes

1(6) = $ {530~ X - =) K- X ) 26
1=1 .
so that the change-point estimator is

T, = QTGMAT 1 < 4 o oz : 2.7)
where

Z=tn—-t)(X,—X)/h, t=1,2-,n—1 (28)
and

t ’ n—t ’

o~ I

t
and S(t) = EX;; t= 1,2,"',71_
1=1

Gombay and Horvath(1990) considered the test statistic for a change in the mean of

independent random variables with Z, Xt* and 3(—,; Their test statistics are based on

Z,.=2{t(X) +£9(X) —ng(X,)} 29
where g is a given function with the second derivative g(z) s 0. The choice g(t) = %tz in
(2.9) gives

«_ {nS(t)—tS(n)¥
Z, = nt(n—1) , l<m<t<m, < n. (2.10)

Their change-point estimator is
Ten = argmaz, §t<nZ_q2,t- (211

Gombay and Horvath(1996) considered the maximum likelihood change-point estimator when
the observations are from the exponential family and obtained the asymptotic distribution if
there is a change in the parameters at an unknown time. They considered the parameter
vectors and observation vectors.

After Hinkley’s research nonparametric change-point estimators are developed. Here we
briefly review the following nonparametric estimators for simulation later.

Schechtman(1982) considered two samples (X, X+, X;), (X;4, -+, X,) and
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U(t,n_t)=—;—{2 by sm(&—XQ—%—t(n—t)} (2.12)
=1 k=i+1
and standardized version of U
t?gtzn—-tt)! . 0 5
14 L t=1,2,--,n—1. :
t n+1 5 2 14570, (2 13)
12t(n—t)
Schechtman(1982) suggested the change-point estimator as
Tshe =argmaz, <, Vi . (2.14)

Carlstein(1988) considered the change-point estimator which maximizes the distance between
the two distributions. The pre-t empirical cdf ;h(z) and the post-t empirical cdf h,(z) are
defined respectively as follows:

(z)= ZI{X; <z}/t, and by(z) = Y, HX <z}n(1-t) (2.15)
i=ni+1

where I{ - )15 the indicator function as

<
1xa) ={y §3%

Using ¢h(z) and h,(z), Carlstein(1988) considered three criterion function and suggested the

following change-point estimators:

To =argmaz, <, D (t) where D;(t) =1*°(1—1¢)%n '12|h(x )—h(z;) |

T = argmaz; <, Dy (t) where Dy(t) =t*°(1— t)o's{:}l—ti(h (z;) — h(z; ))2}ﬂ

T =argmar, << ,ls (t) where Dy(t) = ¢0 (1-¢ )0'53Uplsisn|th (z;) = hy(z;)l.
(2.16)
Carlstein(1988) estimators is known to perform well when F and G share the same mean,

variance and skewness.

3. Change-point Estimation with the Loess of Means

As was seen in Section 2, the change-point estimator can be a function of X, Xt* and X,

The function should measure the divergence of the difference at each point {. We consider a

loess smoothing function of )—(t and )Q* and compare their difference.

Local polynomial regression has been systematically studied by Stone(1977) and
Cleveland(1979). Loess(local regression smoothing) is a modern popular local regression
technique globally modelled by a polynomial and locally fitted with the kernel function.
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A locally weighted polynomial regression at = is modelled as
Z{Yi_ﬂo_ﬂl(t—x)}Q'K;L(t—x) 3.1
=1 .

where K( ) denotes a kernel function and h is a bandwidth. ﬁj, 7=20,1 is the minimizer

of (3.1). The whole curve s( + ) is obtained by running the above local polynomial regression
with t varying in an appropriate estimation domain. With the degree of the local polynomial
p=1, the estimator s(z) is termed a local linear regression or a local linear fit. The

estimator can be explicitly expressed as

s(t)=—, w, =K, (t; —t){S, . — (t: —t)S,1} (3.2)

where S, ; = Z[ﬁl (t; —z)(t; —z)’. With this estimator,
=1

Z(t) =tn—t)[s(X) —s(X)NPh,  t=1,2--n—L (33)
can be considered. At the point ¢, ZL2 would reflect the existence of the change-point with the

bigger values. The change-point estimator is proposed as
T, = argmaz; <, < 2z (t). (3.4)

Proposition 3.1 7} is a consistent change-point estimator.

proof. At the point t # T, P(lz—f | >d) <€ and by the continuity of the smoothing
function, P(1s(X;)—s(X)|>08) <e. Att=r7, let [X,—~X|=A.
If s(+) is sufficiently smooth, then Taylor's expansion implies, £k < T
s(X;) =s(u) +5 (u)(Xe—p) +op (1),
s(X0) =5 () +8 ()X — ) +0p(1)
and therefore (s(X;) —s(X; ))? = op(1).
At the true change-point at 7 , with g = p+ A
s(X) =s(p)+5 (u)(X,— ) +op(1),
s(X) =)+ (W)X —p) +op(1)
and therefore (s(X,) —s(X.))> = A%+ op(1).

To prove P(lr —1 > §)—0 as n—>o0, we consider the probability
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Akn—k)(s(%) —s(X0))? > m(n—1)(s(X) — s (X))?]
E(n—k)(s () = (X))’
r(n—7)(s(X) — s (X))’

:P[<s<)7k>—s(3ff>>2 > 540,

Since (s (Z) —S(X,: ))2=0p(1). For k> 7, the same procedure is done and the result

>1 (3.5)

follows.
4, Simulation

A simulation study was conducted to investigate the behavior of the proposed change-point
estimator and to compare the previously suggested estimators. The data are generated from
the one change-point model with iid errors with mean ( and variance 1. The mean level
change model with one change-point is as follows:

= T @
where =0, A= pu;—pyo=1. And the errors ¢'s are from the normal, double exponential,

uniform distributions.
The observations are randomly generated from normal, double exponential and uniform
distributions. The mean, MSE(mean squared error) of the change-point estimator and the

proportion as the estimated probability of P (|7: —71<2), 95% confidence interval for T are
calculated.

<Table 1> shows that the proposed estimator has smaller MSE than - Hinkley(1972)
estimator 7y, and other nonparametric estimators. Gombay and Horvath(1990) procedure is

applied to the estimators as Ty with g(t) = —%—tz and Tgpe with g(t) =‘et. The bandwidth

as a smoothing parameter affects the result. The bandwidth 0.2 and 0.3 are considered and
slightly different MSE’s are obtained accordingly. <Table 1> shows that the proposed
change-point estimator gives smaller MSE than others especially in the normal and uniform
distributions. It tells that smoothing of means works better for mean estimation and mean
change-point estimation. When there are outliers, for example, one outlier outside of 2
sténdard deviation, the proposed estimation gives no better result than the nonparametric
estimators which are less sensitive to outliers, but better result than Hinkley estimator in the
sense of MSE as shown in <Table 2>. Because the effect of outliers are smoothed via loess
smoothing, the proposed method gives smaller MSE than the parametric estimation method.
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5. Conclusion

" The parametric change-point estimation problem was considered and the new method with
the loess smoothing was proposed. Loess smoothing of means gave the improvement of the
estimation less sensitive with the outliers. As suggested, the change-point estimation method
combined with parametric and nonparametric smoothing made another technique for the
change analysis. Also other smoothing techniques can be applied in the change analysis.
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<Table 1> Comparison of change-point estimators with n=100, the change-point
7=50, 7=30 in 1,000 repetitions

change-point =50 7=30

mean | MSE pro‘por 95% mean {| MSE proﬁpor 95%
-tion Cl —tion CI

T |49.690(36.478 |0.630 |(37, 61)|31.184|73.574 (0.602 [(18, 57)
Tsne |49.639(37.385 |0.633 [(36, 61)[31.428|72.590 {0.593 [(19, 54)
Ta 48.323|56.893 |0.609 [(23, 59)[29.537|55.487 |0.576 [(13, 43)
Normal| 7, 48.531(56.351 |0.602 |(23, 60)[29.648/61.434 [0.570 |(13, 44)
po=0,|Tg 46.992|285.048|0.367 [(10, 83)|32.079(248.541|0.377 |(10, 83)
m=1|Tem  ]49.690(36.478 |0.630 |(37, 61)|31.184|73.574 |0.5602|(18, 57)
Tem  |51.970/55.930 [0.613 |(41, 74) |33.346(117.164|0.581 |(21, 68)
Trn-02 |49.881[28.825 (0.591 [(38, 60)|31.398(60.280 |0.581 [(21, 54)
Ty n-03 |50.005(27.335 [0.500 [(40, 59){31.794(72.730 [0.467 {(20, 56)
Tk |49.655[34.393 (0.640 [(34, 62)]30.737(52.741 |0.607 [(17, 50)
Tsne |49.773]20.623 [0.689 |40, 60)|30.825(27.723 [0.681 |(22, 42)
double [ La 49.201(27.835 [0.680 |(37, 59)29.633|27.769 |0.658 |(15, 40)
exp Lo 49.311]22.991 |0.700 [(38, 58){29.756(21.726 [0.680 |(17, 40)
1y =0, Tes 48.278(253.672(0.443 |(10, 87)]32.346(281.580/0.395 |(10, 88)
_ |Tem  |49.655/34.393 10.640 [(34, 62)30.737|52.741 {0.607 |(17, 50)
b= T s [51.742]58.666 |0.616 |(41, 74)|33.185]118.391]0.588 |21, 69)
T, 1-02 |49.883(33.093 [0.573 |(37, 63) |31.225/45.059 |0.576 [(21, 49)
Trh-03 |49.888(35.414 |0.505 [(38, 61){31.567|61.497 [0.476 |(18, 51)
Twne  |49.538]46.100 [0.598 [(32, 62)]30.768(45.726 |0.620 |(19, 48)
Tsne |49.455]61.505 [0.568 [(29, 66)[31.294(57.112 [0.593 [(19, 51)
Ta 47.957|74.561 [0.555 |(24, 61)29.372|52.010 [0.572 [(13, 46)
Uniform| T, 48.158|84.290 |0.534 |(22, 66)29.697|72.475 |0.552 |(13, 50)
po=0, T 47.101|273.117(0.370 [(10, 81)|31.399(231.093|0.354 |(10, 80)
p =1 |Tem  |49.538(46.100 |0.598 |(32, 62)[30.768(45.726 |0.620 |(19, 48)
T |51.946(62.052 (0.581 |(39, 72)|32.840(87.696 [0.600 (22, 59)
Tr h-02 |49.636(34.064 |0.606 [(35, 61){31.088|39.628 [0.595 |(21, 45)
Trh-03|49.726|36.244 |0.503 |(37, 60) |31.277|41.973 |0.483 |(21, 45)
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<Table 2> Comparison of change-point estimators with n=100, the change-point
7=50, 7=30 in 1,000 repetitions with one outlier outside 2 standard deviation

change-point 7=50 7=30
r| 95% r| 95%
Mean | MSE pro'po 7 Mean | MSE pro.po 0
-tion CI -tion CI

T |49.918(55.418 [0.626 [(29, 66) |30.627|77.495 |0.567 |(16, 55)
Ten — ]49.997|54.955 0.628 |(29, 68) |31.253/89.683 |0.559 |(16, 58)
Ta 48.118(90.338 [0.596 |(18, 64) |28.457|78.477 |0.521 {(10, 47)
Normal | T, 148.193/91.137 [0.595 |(18, 66) |28.814(80.004 |0.527 |(11, 50)
Ho=0, Ty  |45.400|345.452|0.330 |(10, 84)|31.169|316.8450.310 [(10, 88)
pm=1 (Tem [49.918(55.418 (0.626 (29, 66)30.627(77.495 [0.567 ((16, 55)
Tem  |52.478(76.578 [0.602 |(40, 79)|33.615]129.657/0.553 |(18, 68)
Ty h=02150.115/46.301 [0.591 |(31, 66) |31.259(73.549 |0.556 |(16, 56)
Trn=03|50.257(49.701 |0.511 |(32, 64)|31.319(89.165 [0.371 |(14, 55)
Twnr  |49.659(54.265 [0.654 |(27, 64) |30.356|62.854 [0.601 |(15, 50)
Ten.  |49.869(28.059 [0.694 |(38, 60)|30.382(41.562 |0.664 |(17, 46)
Ta 48.880[43.870 [0.682 [(27, 59) |28.410|44.098 [0.625 |(12, 39)
Te 49.370(31.344 [0.706 [(32, 58) |28.967|36.517 |0.661 |(14, 39)

double

exp

1t =0 Tes 46.7811342.731(0.390 |(10, 90)}31.7951325.403{0.351 [(10, 88)
1 Tem 49.659|54.265 |0.654 |(27, 64)[30.356(62.854 [0.601 |(15, 50)

=

Teme  |51.976(74.048 |0.608 |(38, 78)[33.388(133.004[0.586 [(18, 72)
T1h—02]49.640(47.462 |0.587 |(29, 62)[30.924|53.988 [0.577 [(16, 51)
T n-03|49.877|48.863 [0.506 |(31, 61)|30.669|60.257 [0.355 (13, 49)
Twe  |49.918(46.264 10.600 [(32, 64)[30.255[65.103 [0.569 [(13, 48)
Tsne  [49.730[57.824 |0.566 |(27, 65)31.259|94.745 [0.545 |(13, 57)
Ta 47.779(98.609 10.550 |(18, 63)]28.164(80.772 |0.498 |(10, 45)
Uniform | T, 47.633109.599(0.520 |(15, 65)|28.577|96.319 [0.484 |(11, 47)
po=0, T4 46.948(302.33210.352 |(10, 82)[31.844|273.860[0.311 {(10, 79)
p=1 |Tem  [49.918(46.264 [0.600 ((32, 64)[30.255(65.103 |0.569 |(13, 48)
Tem  |52.219(59.451 [0.580 |(41, 74) 133.051|113.965(0.550 |(18, 66)
T1 h=02149.822(42.500 (0.612 |(31, 61)[31.022|54.916 |0.549 |(15, 49)
Trh=03]49.991|42.645 [0.533 (33, 61)[30.871|57.595 |0.341 |(15, 48)




