DOI QR코드

DOI QR Code

Consensus Clustering for Time Course Gene Expression Microarray Data

  • Kim, Seo-Young (Research Institute for Basic Science, Chonnam National University) ;
  • Bae, Jong-Sung (Department of Statistics, Chonnam National University)
  • Published : 2005.08.01

Abstract

The rapid development of microarray technologies enabled the monitoring of expression levels of thousands of genes simultaneously. Recently, the time course gene expression data are often measured to study dynamic biological systems and gene regulatory networks. For the data, biologists are attempting to group genes based on the temporal pattern of their expression levels. We apply the consensus clustering algorithm to a time course gene expression data in order to infer statistically meaningful information from the measurements. We evaluate each of consensus clustering and existing clustering methods with various validation measures. In this paper, we consider hierarchical clustering and Diana of existing methods, and consensus clustering with hierarchical clustering, Diana and mixed hierachical and Diana methods and evaluate their performances on a real micro array data set and two simulated data sets.

Keywords

References

  1. Bhattacharjee, A., Richards, W.G., Staunton, J., Li, C., Monti, S., Vasa, P., Ladd, C., Beheshti, J., Bueno, B., Gillette, M., Loda, M., Weber, G., Mark, E.J., Lander, E.S., Wong, W., Johnson, B.E., Golub, T.R., Sugarbaker, D.J., and Meyerson, M. (2001). Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinomas sub-class. Proceeding of the National Academy of Sciences, 98, 13790-13795
  2. Brown, P.O., Botstein, D. (1999). Exploring the new world of the genome with DNA microarrays. The chipping forecast, 21, 33-37
  3. Cho, R.J., Campbell, M.J., Winzeler, E.A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T.G., Gabrielian, A.E., Landsman, D., Lockhart, D.J. and Davis, R.W. (1998). A genome-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell, 2, 65-73 https://doi.org/10.1016/S1097-2765(00)80114-8
  4. Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Botstein, D., Brown, P.O. and Herskowitz, I. (1998). The transcriptional program of sporulation in budding yeast. Science, 282, 699-705 https://doi.org/10.1126/science.282.5389.699
  5. Datta. S. and Datta, S. (2003). Comparisons and validation of statistical clustering techniques for microarray gene expression data. Bioinformatics, 19, 459-466 https://doi.org/10.1093/bioinformatics/btg025
  6. De Hoon, M.J.L., lmoto, S. and Miyano, S. (2002). Statistical analysis of a small set of time-ordered gene expresion data using linear splines. Bioinformatics, 18, 1477-1485 https://doi.org/10.1093/bioinformatics/18.11.1477
  7. DeRisi, J.L., Iyer, V.R. and Brown, P.O. (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science, 278, 680-686 https://doi.org/10.1126/science.278.5338.680
  8. Dudoit, S., and Fridlyand, J. (2002). A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Bilogy, 3, research0036
  9. Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proceeding of the National Academy of Sciences, 95, 14863-14868
  10. Huber, L. and Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193-218 https://doi.org/10.1007/BF01908075
  11. Jain, A.K. and Moreau, J. (1988). Bootstrap techniques in cluster analysis. Pattern Recognition, 20, 547-568
  12. Kim, S. Y. and Lee, J. W. (2004). Ensemble clustering method based on the resampling similarity measure for gene expression data. Submitted
  13. Levine, E. and Domany, E. (2001). Resampling method for unsupervised estimation of cluster validity. Neural Computation, 13, 2573-2593 https://doi.org/10.1162/089976601753196030
  14. Luan, Y. and Li, H. (2003). Clustering of time-course gene expression data using a mixed-effects model with B-splines. Bioinformatics, 19, 474-482 https://doi.org/10.1093/bioinformatics/btg014
  15. Monti, S., Tamayo, P., Mesirov, J. and Golub, T. (2003). Consensus Clustering: A resampling based method for class discovery and visualization of gene expression microarray data. Kluwer Academic Publishers
  16. Peddada, S.D., Lobenhofer, E.K., Li, L., Afshari, C.A., Weinberg, C.R. and Umbach, D.M. (2003). Gene selection and clustering for time-course and dose-response microarray experiments using order-restricted inference. Bioinformatics, 19, 834-841 https://doi.org/10.1093/bioinformatics/btg093
  17. Quackenbush, J. (2001). Computional analysis of micro array data. Nature Reviews, Genetics, 2, 418-427 https://doi.org/10.1038/35076576
  18. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D. and Futcher, B. (1998). Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization. Molecular Biology of the Cell 9, 3273-3297 https://doi.org/10.1091/mbc.9.12.3273