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Estimating the Number of Clusters using Hotelling’s 7°1

Kyungmee Choi?)

Abstract

In the cluster analysis, Hotelling’s T® can be used to estimate the unknown
number of clusters based on the idea of multiple comparison procedure. Especially, its
threshold is obtained according to the probability of committing the type one error.
Examples are used to compare Hotelling’'s T® with other classical location test

statistics such as Sum-of-Squared Error and Wilks’ /A The hierarchical clustering is
used to reveal the underlying structure of the data. Also related criteria are reviewed
in view of both the between variance and the within variance.

Keywords : Multiple Comparison Procedure, Type One Error, Bonferroni-Type Significance
Level

1. Introduction

Recently the cluster analysis has been widely used. However estimating the number of
optimum clusters has lead to a variety of different clustering methods. Early works related to
this include works by Ward (1963) and Mojena (1975). Latest works include Rousseeuw and
Driessen (1999), Duda et al. (2001), Hastie et al. (2001), and Gallegos (2002). Duda, Hart, and
Stork (2001) pointed out that in general the number of optimum clusters is not known.

Most previous methods have used, as criteria, functions of variances within each clusters
(within-variance). Smaller within-variances tend to provide well separated clusters. Bigger
variances between clusters (between-variance) also imply that clusters are well separated. If
the between-variance is big compared to the within-variance, it is very clear that the clusters
are well separated. However if the between-variance is small compared to the within-variance,
clusters are often unlikely to be well separated even with the small within-variance. Therefore
it is more reasonable to use the criteria which consider both the within-variance and the
between-variance.
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The classical Hotelling’s T? is used as a criterion to estimated the number of clusters, and

other related location test statistics such as Sum-of-Squared Error ( SSE) and Wilks’ A are
explored for comparison. See Mardia et al.(1979), Duda et al. (2001), Hastie et al. (2001), and
Rencher (2002). While SSE does not consider the between-variance, the rest two consider a
ratio of the between-variance to the within-variance. However SSE has been one of the most
widely used criteria based on the within-variance. Compared to SSE, Wilks’ / has not been
used as a criterion. Also Hotelling’s 7% has been only once used by Kim and Chung (2003)
even though they used a much bigger threshold than the one that will be proposed in this
paper. Since both Wilks’ A and Hotelling’s 7*° are powerful location tests, they are expected
to make potentially powerful criteria to estimate the number of clusters.

When the data follow a normal distribution, SSE is approximately related to a %2
distribution, Wilks’ A follows a Wilks’ A distribution and also approximately follows a ¥
distribution. Hotelling’s 7% follows an F distribution. Thus their distributions provide us clear
thresholds for the given significance levels (significant error rates) along with nice statistical
interpretation. v

The hierarchical clustering is used because it reproduces the hierarchical structure of the
data or the underlying structure of the data (Mojena, 1975). However all the criteria mentioned
in this paper can be also used for the k-means clustering. These criteria will be calculated at
each hierarchical level and presented in graphs to depict the estimates of the number of
clusters. However the partitions are not necessarily optimal (Ward,1963).

In Section 2, three criteria are reviewed and their thresholds are sought for the given
significance levels (significant error rates). In Section 3, as examples, seven equally spaced
clusters of size 15 are simulated from bivariate normal distributions with different locations.
For each set of data, three criteria are calculated and depicted.

2. The notations and the Criterion Functions

Suppose that for x;€R’,j=1,"--,n, let the data be a set of D = {x),%5,*-*,x,} and cluster
them into the c disjoint clusters, D, D,,*:-,D,. Let n; be the size of D, For each cluster
D;, let us define the mean and variance, m;= Z;bx/ n; and S;_ z;b(x—m,-)(x—mi) T The

2ED; €D,
grand mean is m= %x/ n. Then Sp=Sy+Sp where Sy is the within-cluster scatter matrix
xE.

(within-variance), and Sp is between-cluster scatter matrix (between-variance) defined in the

following way:

Sp= lz:‘is,. and Sg= gni(mi—m)(mi—m)T.v
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At the hierarchy of clusters, the level ¢ corresponds to ¢ clusters. Let the given significance

level at each clustering level be @, which is controlled by the thresholds.

2.1 The Sum-of-Squared—-Error

Let us define the Sum-of-Squared-Error as

SSE= 3, 3 llx—mil*
Note that SSE=t(Sp=31#(S). Since #SA=tlSsl+mSy and #1S7] is fixed,

minimizing Sy implies maximizing Sp. Duda, Hart, and Stork (2001) suggested to find the
number of clusters by minimizing SSE and pointed out that SSE worked best when the
clusters are compact and well-separated. They also mentioned that when there was no
minimum, the natural number of clusters was determined at the big gap. However often SSE
decreases monotonically in ¢ and tends to converge, so that there is not always the minimum.
Also there could be multiple big gaps.

Ward (1963) tried to estimate the number of clusters by minimizing increase of SSE, which
lead to the use of both the within-variance and the between-variance. Mojena (1975)
evaluated Ward’s Incremental Sum of Squares as the best among seven criteria

studied at that time. On the other hand Rousseeuw and Driessen (1999) used l;Ildet(Si) ISJ,

(o
where |S] is the cardinality of ith cluster. Gallegos (2002) used Hldet(Si) as a criterion,
P,

and showed that m; and S; were Maximum Likelihood Estimators of means and variances of
each clusters when data were generated from normal distributions. Using the trace considers

only diagonals of the variance matrices, while using the determinant considers correlations,
too.

2.2 Wilks' 4

Wilks’ A is one of the traditional statistics which test whether the locations of more than
two groups are equal. This measure can be expressed as a function of the ratio of the
between-variance to the within-variance, which is defined by

fe— deKSw _ _ 1
def(Sg+Sw  de(Sy'Spt+D

See Mardia (1979). The number of clusters is sought where A is minimized. However like

SSE, A decreases monotonically in ¢ When the data follow a multivariate normal
distribution, this statistic follows a Wilks’ A distribution ZA(p,%n—c,c—1). When the sample size
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is large enough, its log transformation approximately follows a xz distribution.

To obtain the statistically meaningful threshold which controls the significant level
(significant error rate), let us define the p-value of a given value A, at the cth clustering
level as follows : p=HKA<A,). A small p-value provides a strong evidence of two separate

clusters. If there is not a significant decrease in p-value from the cth clustering level to the
(c-1th clustering level, then c¢ is closer to the optimal number of clusters, where the criteria
reaches the minimum.

The related statistics have been introduced by Pillai, Lawley-Hotelling, and Roy. #A{Sy'Sp)

and #{(S7!Sp) are also closely related to A See Hastie (2001), Duda, Hart, and Stork (2001),
and Rencher (2002). Rencher (2002) introduced an analog of the univariate analysis of
variance, [#(Sg)/(c—1D]/[t{Sy)/(n— )], which has a local maximum.

2.3 Hotelling’s 7%

The classical Hotelling’s T? tests whether the locations of two clusters are equal or not.
For D; and D; clusters with #%j, it is defined by '

1= 2D ) S5 m=m),

where S ;=(S;+S)/(n;+n;—2). When the data follow a multivariate normal distribution,

(n+n—p—D/Kn+n—2)T follows an F(p, n;+n—p—1). This statistic can be interpreted as
the Mahalanobis distance between the centers of two clusters. See Mardia (1979).

To start finding the number of clusters, let us consider two clustering levels with (c-1) and
¢ clusters. It is necessary to decide which level is more optimal than the other. If no more
merging occurs, then the final level is called the optimal in view of this criterion. To be more

precise let us consider (g ) of Hotelling’s T’s at the cth clustering level, and they are

used to decide which pair of clusters to be merged. Note that this leads to a classical multiple
comparison (multiple-inference) procedure. If no significant merging occurs, then ¢ is more
optimal than (c-1). Otherwise (c-1) is more optimal.

Let us assume the value 7, be Hotelling’s 7217 for the pair of D; and D; clusters at the
cth clustering level. Then the corresponding p-value, p i 1s defined by
p i=R(n+n—p—D)/Kn+n—2) =T )=RKFp, ni+n—p—1)=T),
where F(p, n;+n—p—1) is the F distribution with p and ;+n—p—1 degrees of freedom.

A small p; is a good evidence of two separate clusters. Especially if max ;cujcc
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(MPH) is less than the given threshold, all ¢ clusters are separated and so ¢ is closer to the
optimal than (c-1). Thus in order to obtain a meaningful threshold, the bound of MPH should
be studied. See Proposition 1 below.

Traditional multiple comparison procedures control the significance level (significant error
rate) a@ by controlling the probability of committing any falsely declared significant inference

under simultaneous consideration of (g ) multiple inferences. Yet, Kim and Chung (2003) have

used Hotelling's T? as an individual inference to decide whether each pair of clusters were to

be merged, so that each individual inference used @ as a threshold. Ignoring the multiplicity
of the inference, however, leads to a greatly increased false significant error rate. In this
paper we control the multiplicity effect using the Bonferroni-Type Significance Level
procedure (BSLP)(Rencher, 2002).

Let R be the number of pairs of clusters which are declared to be separated. Let V be the
number of pairs of clusters which are falsely declared to be separated. BSLP tests

individually each pair of clusters at level a,=al (C), which guarantees the probability of at

least one falsely declared 31gmflcant to be less than a. That is, P(V=1)<a. Since a, gets

usually very small as ¢ grows, BSLP is known to be very conservative and relatlvely lose its
power. So the further studies can develop the thresholds based on the different multiple
comparison procedures.

As an example, let us assume that @=0.05 as the total significance level (significant error

rate) at the 4th clustering level. There are (g) pairs of clusters. In the BSLP,

a,=(0.0083, -++,0.0083) for all (g) pairs. S0 max <j<c P 5 is compared to 0.0083.

Proposition 1 Let « be the given significance level (significant error rate) at each clustering

level and p ; for i#j be p-value of the individual test T%;. Then,

in the BSLP : P(max \sirj<c D g<al (5) occurs falsely)Sa.

Proof follows directly from the definitions of the BSL. Therefore using MPH guarantees « as
the significance level (significant error rate). So the algorithm follows right away with the
threshold a; based on the BSLP.

3. Examples and Discussion

In order to compare three criteria, two sets of simulated data were generated. In R? seven
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equally spaced clusters of size 15 were generated from bivariate distributions. The data were
clustered using hierarchical clustering. Then at each clustering level three criterion functions
were calculated and plotted. Splus was used for the program. Clusters of outliers were
carefully removed. ‘

In order to generate seven equally spaced clusters, an equilateral hexagon is adopted. An
equilateral hexagon is decomposed into six equal equilateral triangles, and the centers of six
clusters are located at the vertexes of the hexagon. The seventh cluster is centered at the
center of the hexagon. Thus for k=1,--+6, the centers of six clusters are expressed as

1= (cos (2kr/6), sin (2kx/6))xd,
where d is the Euclidean distance of the centers from the origin. The center of the seventh
cluster is defined by g,=(0,0). The random seven clusters can be generated by randomizing
k and d if randomization is needed.

In <Figure 1> and <Figure 2>, the horizontal axis represents the number of clusters, and
the vertical axis represents the criteria. In <Figure 1>, data were generated for d=2. SSE and
/A drop sharply at c=4 and then decrease more smoothly afterwards, which recommends that

the number of clusters can be estimated as ¢=4 For Hotelling’s TB, MPH jumps at c=4

and c=7. Based on a, is 0.0083 at c=4, and 00024 at c=7 the BSLP retuns c¢=4 as the
estimate of the number of clusters.

In <Figure 2>, d=4. SSE hits the bottom at c=7, while A convefges smoothly to ¢=7. For
Hotelling’s 7° MPH shows a clear jump at c=7. The BSLP provides a, as 0.0024 at c=7,
so it found 7 as the estimate. So this time, SSE, A and the BSLP coincide. '

In most cases SSE and A behave similarly, which means that A is strongly related to SSE.

However Compared to SSE, A is a good robust criterion because it considers both the
within-variance and the between-variance. Also its p-value can be found and used as a clear

threshold based on its exact distribution theory. For the similar reasons, Hotelling’s 7% can
be used to make a good merging criterion with a clear threshold and it provides a clear jump
when a significant split of clusters occurs, so that the number of clusters are easily estimated
at the threshold.

Since there have been many other multiple comparison procedures developed, they can be
further adopted to be compared with Bonferroni-Type Significance Level.

When the dimension gets bigger than 2, other types of equilateral geometric shape should
be considered and the performance could change. Yet, the performance would not collapse
down as long as the sample size is big enough and outliers are carefully controlled. Therefore
in the future, more simulation study should be done for this matter.
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<Figure 1> (Top Left) Plot of data with inter-cluster distance 2 (Top Right) MPH

(Bottom Left) MSE (Bottom Right) Wilks’ A
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<Figure 2> (Top Left) Plot of data with inter—cluster distance 4 (Top Right) MPH

(Bottom Left) MSE (Bottom Right) Wilks’ A
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