Cold Shock Response of Leuconostoc mesenteroides SY1 Isolated from Kimchi

  • KIM JONG HWAN (Division of Applied Life Science, Graduate School, and Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • PARK JAE-YONG (Division of Applied Life Science, Graduate School, and Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • JEONG SEON-JU (Division of Applied Life Science, Graduate School, and Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • CHUN JIYEON (Division of Applied Life Science, Graduate School, and Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • KIM JEONG HWAN (Division of Applied Life Science, Graduate School, and Institute of Agriculture & Life Science, Gyeongsang National University)
  • Published : 2005.08.01

Abstract

Low-temperature adaptation and cryoprotection were studied in Leuconostoc mesenteroides SYl, a strain isolated from Kimchi. L. mesenteroides SY1 cells grown in exponential growth phase at $30^{\circ}C$ were exposed to $15^{\circ}C,\;10^{\circ}C$, and $5^{\circ}C$ for 2, 4, and 6 h, respectively, and then frozen at $- 70^{\circ}C$ for 24 h. Survival ratio was measured after the cells were thawed. The freezing-thawing cycles were repeated four times. Preadapted cells survived better than non-adapted control cells, and the highest survival ratio ($96\%$) was observed for cells preadapted for 2 h at $5^{\circ}C$, whereas control cells showed only $22\%$. The 2D gel showed that two proteins (spots A and B) were induced in cells preadapted at lower temperatures. Spots A and B have the same molecular weight (7 kDa), but the pI was 4.6 for spot A and 4.3 for spot B. The first 29 and 15 amino acid sequences from spots A and B were determined, and they were identical, except for one amino acid. A csp gene was cloned, and nucleotide sequencing confirmed that the gene encoded spot A cold shock protein.

Keywords

References

  1. Blum, H., H. Beier, and H. J. Gross. 1987. Improved silver staining of plant protein, RNA and DNA in polyacrylamide gels. Electrophoresis 8: 93-99 https://doi.org/10.1002/elps.1150080203
  2. Cheigh, H. S. and K. Y. Park. 1994. Biochemical, microbiological, and nutritional aspects of kimchi (Korean fermented vegetable products). Crit. Rev. Food Sci. Nutr. 34: 175-203 https://doi.org/10.1080/10408399409527656
  3. Derzelle, S., B. Hallet, K. P. Francis, T. Ferain, J. Delcour, and P. Hols. 2000. Changes in cspL, cspP, and cspC mRNA abundance as a function of cold shock and growth phase in Lactobacillus plantarurn. J. Bacteriol. 182: 5105-5113 https://doi.org/10.1128/JB.182.18.5105-5113.2000
  4. EI-Kest, S. E. and E. H. Marth. 1992. Freezing of Listeria rnonocytogenes and other microorganisms: A review. J. Food Proto 55: 639-648 https://doi.org/10.4315/0362-028X-55.8.639
  5. Francis, K. P. and G S. A. B. Stewart. 1997. Detection and speciation of bacteria through PCR using universal major cold-shock protein primer oligomers. J. Ind. Microbiol. Biotechnol. 19: 286-293 https://doi.org/10.1038/sj.jim.2900463
  6. Franks, F. 1995. Protein destabilization at low temperatures. Adv. Proto Chem. 46: 1 05-139 https://doi.org/10.1016/S0065-3233(08)60333-2
  7. Graumann, P., T. M. Wendrich, M. H. W. Weber, K. Schroder, and M. A. Marahiel. 1997. A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Mol. Microbiol. 25: 741- 756 https://doi.org/10.1046/j.1365-2958.1997.5121878.x
  8. Jhon, D. Y. and S. H. Lee. 2003. Complete DNA sequence and analysis of a cryptic plasmid isolated from Lactobacillus biferrnentans in Kimchi. J. Microbiol. Biotechnol. 13: 1018-1020
  9. Jiang, W., Y. Hou, and M. Inouye. 1997. CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J. Biol. Chem. 272: 196-202 https://doi.org/10.1074/jbc.272.1.196
  10. Jones, P. G, R. Krah, S. R. Tafuri, and A. P. Wolffe. 1992. DNA gyrase, CS7.4, and the cold shock response in Escherichia coli. J. Bacteriol. 174: 5798-5802 https://doi.org/10.1128/jb.174.18.5798-5802.1992
  11. Kim, J., J. Chun, and H.-V. Han. 2000. Leuconostoc kirnchii sp. nov., a new species from kimchi. Int. J. Syst. Evol. Microbiol. 50: 1915-1919 https://doi.org/10.1099/00207713-50-5-1915
  12. Kim, K. J., K. N. Kim, and Y. J. Choi. 2004. Characterization of the ariA genes from Bacillus stearotherrnophilus No. 236 and its protein product, ${\alpha}$-L-arabinofuranosidase. J. Microbiol. Biotechnol. 14: 474-482
  13. Kim, S. J., J. H. Kim, J. Y. Park, H. T. Kim, Y. L. Ha, H. D. Yun, and J. H. Kim. 2004. Cold adaptation of Lactobacillus paraplantarurn C7 isolated from kimchi. J. Microbiol. Biotechnol. 14: 1071-1074
  14. LaTeana, A., A. Brandi, M. Falconi, R. Spurio, C. L. Pon, and C. O. Gualerzi. 1991. Identification of a cold shock transcriptional enhancer of the Escherichia coli major cold shock gene encoding nucleoid protein H-NS. Proc. Natl. Acad. Sci. USA 88: 10907-10911
  15. Lee, C., C. Ko, and D. M. Ha. 1992. Microfloral change of the lactic acid bacteria during kimchi fermentation and identification of the isolates. Kor. J. Appl. Microbiol. Biotech. 20: 102-109
  16. Lim, C., H. Park, and H.-U. Han. 1989. Reevaluation of isolation and identification of gram-positive bacteira in kimchi. Kor. J. Microbiol. 27: 404-414
  17. Nam, S. J., J. Y. Park, J. K. Kim, Y. L. Ha, H. D. Yun, and J. H. Kim. 2004. Cloning of pdh genes encoding subunits of pyruvate dehydrogenase complex from Lactobacillus reuteri ATCC 55739. J. Microbiol. Biotechnol. 14: 197-201
  18. O'Farrell, P. H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250: 4007-4021
  19. Patton, W. F., N. Chung-Welch, M. F. Lopez, R. P. Cambria, B. L. Utterback, and W. M. Skea. 1991. Tris-tricine and trisborate buffer systems provide better estimates of human mesothelial cell intermediate filament protein molecular weights than the standard tris-glycine system. Anal Biochem. 197: 25-33 https://doi.org/10.1016/0003-2697(91)90350-3
  20. Rallu, F., A. Gruss, and M. E. Maguin. 1996. Lactococcus lactis and stress. Antonie van Leeuwenhoek 70: 243-251 https://doi.org/10.1007/BF00395935
  21. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., U.S.A
  22. Thammavongs, B., D. Corroler, J.-M. Panoff, Y. Auffray, and P. Boutibonnes. 1996. Physiological response of Enterococcus faecalis JH2-2 to cold shock: Growth at low temperatures and freezing/thawing challenge. Lett. Appl. Microbiol. 23: 398-402 https://doi.org/10.1111/j.1472-765X.1996.tb01345.x
  23. Willimsky, G, H. Bang, G Fischer, and M. A. Marahiel. 1992. Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperatures. J. Bacteriol. 174: 6326-6335 https://doi.org/10.1128/jb.174.20.6326-6335.1992
  24. Wouters, J. A., J.-W.. Sanders, J. Kok, W. M. de Vos, O. P. Kuipers, and T. Abee. 1998. Clustered organization and transcriptional analysis of a family of five csp genes of Lactococcus lactis MG 1363. Microbiology 144: 2885-2893 https://doi.org/10.1099/00221287-144-10-2885
  25. Wouters, J. A., F. M. Rombouts, W. M. de Vos, O. P. Kuipers, and T. Abee 1999. Analysis of the role of 7 kDa cold-shock proteins of Lactococcus lactis M G 1363 in cryoprotection. Microbiology 145: 3185-3194 https://doi.org/10.1099/00221287-145-11-3185
  26. Wouters, J. A., F. M. Rombouts, W. M. de Vos, O. P. Kuipers, and T. Abee. 1999. Cold shock protein and lowtemperature response of Streptococcus therrnophilus CNRZ302. Appl. Eviron. Microbiol. 65: 4436-4442
  27. Yamanaka, K., L. Fang, and M. Inouye. 1998. The CspA family in Escherichia coli: Multiple gene duplication for stress adaptation. Mol. Microbiol. 27: 247-255 https://doi.org/10.1046/j.1365-2958.1998.00683.x