Fusarium proliferatum KGL0401 as a New Gibberellin-Producing Fungus

  • Rim, Soon-Ok (Department of Microbiology, Kyungpook National University) ;
  • Lee, Jin-Hyung (Department of Microbiology, Kyungpook National University) ;
  • Choi, Wha-Youl (Department of Microbiology, Kyungpook National University) ;
  • Hwang, Seon-Kap (Department of Microbiology, Kyungpook National University) ;
  • Seok, Jong-Suh ;
  • Lee, In-Joong (Department of Agronomy, Kyungpook National University) ;
  • Rhee, In-Koo (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Kim, Jong-Guk (Department of Microbiology, Kyungpook National University)
  • Published : 2005.08.01

Abstract

Gibberellins (GAs) play an important role in plant growth and development. Fifteen fungi were isolated from Physalis alkekengi var francheti plant roots, and among them, four isolates showed GA-production activity. A bioassay using waito-c rice was carried out with the culture fluid of the GA-producing fungi. The GA-producing fungi were cultured for 7 days in Czapek's liquid medium at $30^{\circ}C$, 120 rpm, under dark conditions. The culture broth was concentrated 30-fold and 10 ${\mu}l$ of that concentrate was applied to 2-leaf rice sprouts. The height of the rice seedlings treated with the culture fluid of isolate PA08 was 26 cm high, while that of the seedlings treated with the wild-type Gibberella fujikuroi was 13 cm high. As such, the plant growth-promoting activity exhibited by isolate PA08 was 2 times stronger than that exhibited by the wild-type G fujikuroi. The amounts of $GA_l,\;GA_3,\;GA_4,\;GA_7,\;GA_9,\;GA_{20}$, and $GA_{24}$ in the medium were measured using gas chromatography-mass spectrometry (GC-MS), and the quantities produced by isolate PA08 were 4.85 ng/ml, 4.79 ng/ml, 17.30 ng/ml, 6.01 ng/ml, 16.61 ng/ ml, 0.08 ng/ml, and 17.30 ng/ml, respectively. Isolate PA08 was also identified as Fusarium proliferatum KGL0401 by a genetic analysis of the nucleotide sequences of the internal transcribed spacer region of the ribosomal DNA.

Keywords

References

  1. Bayman, B., L. L. Lebron, R. L. Tremblay, and D. J. Lodge. 1997. Variation in endophytic fungi from roots and leaves of Lepanthes (Orchidaceae). New Phytol. 135: 143-149 https://doi.org/10.1046/j.1469-8137.1997.00618.x
  2. Bettina, T. and K. Holter. 1998. Gibberellin biosynthetic pathway in Gibberella fijikuroi: Evidence for a gene cluster. Fungal Genet. Biol. 25: 157-170 https://doi.org/10.1006/fgbi.1998.1095
  3. Eleazar, M., S. Escamilla, Luc Dendooven, P. Ignacio, R. Magana, S. Parra, and M. De la Torre. 2000. Optimization of gibberellic acid production by immobilized Gibberella gujikuroi mycelium in fluidized bioreactors. J. Biotechnol. 76: 147-155 https://doi.org/10.1016/S0168-1656(99)00182-0
  4. Graeb, J. E. 1987. Gibberellin biosynthesis and control. Annu. Rev. Plant Physiol. 38: 419-465 https://doi.org/10.1146/annurev.arplant.38.1.419
  5. Hedden, P. and A. L. Phillips. 2000. Gibberellin metabolism: New insights revealed by the genes. Trends Plant Sci. 5: 523-530 https://doi.org/10.1016/S1360-1385(00)01790-8
  6. Oller-Lopez, J. L., J. Avalos, A. F. Barrero, and J. E. Oltra. 2003. Improved GAl production by Fusarium fujikuroi. Appl. Microbiol. Biotechnol. 63: 282-285 https://doi.org/10.1007/s00253-003-1376-6
  7. Jeong, D. H., K. D. Park, S. H. Kim, K. R. Kim, S. W. Choi, J. T. Kim, K. H. Cho, and J. H. Kim. 2004. Identification of Streptomyces sp. producing antibiotics against phytopathogenic fungi, and its structure. J. Microbiol. Biotechnol. 14: 212-215
  8. Katiyar, Vandana and Reeta Goel. 2004. Improved plant growth from seed bacterization using siderophore overproducing cold resistant mutant of Pseudomonas jluorescens. J. Microbiol. Biotechnol. 14: 653-657
  9. Kim, K. S. and Y. S. Lee. 2000. Rapid and accurate speciesspecific detection of Phytophthora infestans through analysis of ITS regions in its rDNA. J. Microbiol. Biotechnol. 10: 651-655
  10. Kim, S. Y., S. Y. Park, and H. S. Jung. 2001 Phylogenetic classification of Antrodia and related genera based on ribosomal RNA internal transcribed spacer sequence. J. Microbiol. Biotechnol. 11: 475-481
  11. Lee, H. G, J. Y. Lee, and D. H. Lee. 2001. Cloning and characterization of the ribosomal RNA gene from Gonyaulax polyedra. J. Microbiol. Biotechnol. 11: 515-523
  12. Lee, J.-J., K. Foster, and P. W. Morgan. 1998. Photoperiod control of gibberellin levels and flowering in sorghum. Plant Physiol. 116: 1003-1011 https://doi.org/10.1104/pp.116.3.1003
  13. Lewis, N. Mander. 2003. Twenty years of gibberellin research. Nat. Prod Rep. 20: 49-69 https://doi.org/10.1039/b007744p
  14. Metzger, J. D. 1995. Hormones and reproductive development, pp. 617-648. In P. J. Davies (ed.), Plant Hormones. Dordrecht, The Netherlands: Kluwer Academic Publishers
  15. Olszewki, Neil, Tai-ping Sun, and Frank Gubler. 2002. Gibberellin signal: Biosynthesis, catabolism, and response pathways. The Plant Cell S61-S80
  16. Peter Hedden and Andrew L. Phillips. 2000. Gibberellin metabolism: New insights revealed by the genes. Trends Plant Sci. 5: 523-530 https://doi.org/10.1016/S1360-1385(00)01790-8
  17. Peter Hedden, Andrew L. Phillips, Maria Cecilia Rojas, Esther Carrera, and Bettina Tudzynski. 2002. Gibberellin biosynthesis in plants and fungi: A case of convergent evolution? J. Plant Growth Regul. 20: 319-331 https://doi.org/10.1007/s003440010037
  18. Rademacher, W. 1997. Gibberellins, pp. 193-205. In: Anke, T. (ed.). Fungal Biotechnology. Champman and Hall, New York, U.S.A
  19. Radley, M. 1956. Occurrences of substances similar to gibberellic acid in higher plants. Nature 178: 1070-1071 https://doi.org/10.1038/1781070a0
  20. Selvaraj, T., C. Padmanabhan, Y. J. Jeong, and H. Kim. 2004. Occurrence of Vesicular-Arbuscular Mycorrhizal (VAM) fungi and their effect on plant growth in endangered vegetations J. Microbiol. Biotechnol. 14: 885-890
  21. Yoon, S. I., S. Y. Kim, Y. W. Lim, and H. S. Jung. 2003. Phylogenetic evaluation of stereoid fungi. J. Microbiol. Biotechnol. 13: 406-414
  22. Tudzynski, B. and K. Holte. 1998. Gibberellin biosynthetic pathway in Gibberellafljikuroi: Evidence for a gene cluster. Fungal Genet. Biol. 25: 157-170 https://doi.org/10.1006/fgbi.1998.1095
  23. Tudzynski, B. 1999. Biosynthesis of gibberellins in Gibberella fuJikuroi: Biomolecular aspects. Appl. Microbial. Biotechnol. 52: 298-310 https://doi.org/10.1007/s002530051524
  24. Tudzynski, B., H. Kawaide, and Y. Kamiya. 1998. Gibberellin biosynthesis in GibberellajitJikuroi: Cloning and characterization of the copalyl diphosphate synthase gene. Curr. Genet. 34: 234-240 https://doi.org/10.1007/s002940050392
  25. Tudzynski, B., M. Mihlan, M. Cecilia Rojas, P. Linnemannstons, P. Gaskin, and P. Hedden. 2003. Characterization of the final two genes of the gibberellin biosynthesis gene cluster of Gibberellafitjikuroi: Des and P450-3 encode $GA_4$ desaturase and the 13-hydroxylase, respectively. J. Biol. Chem. 278: 28635-28643 https://doi.org/10.1074/jbc.M301927200
  26. Vazquez, M. M., S. Cesar, R. Azcon, and J. M. Barea. 2000. Interaction between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl. Soil Ecol. 15: 261-27 https://doi.org/10.1016/S0929-1393(00)00075-5
  27. Lee, Y. S., H. J. Son, I. H. Kim, and T. L. Mheen. 1983. Studies on the production of gibberellic acid. Kor. J. Appl. Microbiol. Bioeng. 3: 217-222