Characterization of the $\alpha$-Galactosidase Gene from Leuconostoc mesenteroides SY1

  • KIM JONG HWAN (Division of Applied Life Science, Graduate School, Gyeongsang National University) ;
  • PARK JAE-YONG (Division of Applied Life Science, Graduate School, Gyeongsang National University) ;
  • JEONG SEON-JU (Division of Applied Life Science, Graduate School, Gyeongsang National University) ;
  • CHUN JIYEON (Division of Applied Life Science, Graduate School, Gyeongsang National University) ;
  • LEE JONG HOON (Department of Food Science and Biotechnology, Kyonggi University) ;
  • CHUNGZ DAE KYUN (School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • KIM JEONG HWAN (Institute of Agriculture & Life Science, Gyeongsang National University)
  • Published : 2005.08.01

Abstract

Leuconostoc mesenteroides SY1, an isolate from kimchi, was able to ferment $\alpha$-galactosides, such as melibiose and raffinose. $\alpha$-Galactosidase ($\alpha$-Gal) activity was higher in cells grown on melibiose and raffinose than cells grown on galactose, sucrose, and fructose. $\alpha$-Gal activity was not detected in cells grown on glucose, indicating the operation of carbon catabolite repression (CCR). A 6 kb DNA fragment was PCR amplified using a primer set based on the nucleotide sequence of a putative $\alpha$-galactosidase gene (aga) from L. mesenteroides ATCC 8293. Nucleotide sequencing of the 6 kb fragment confirmed the presence of aga and other genes involved in the galactosides utilization, and the gene order was galR (transcriptional regulator)-aga-gaIK (galactokinase)-gaIT (galactose-1-phosphate uridylyltransferase). Northern blotting experiment showed that aga, gaIK, and gaIT constituted the same operon, that the transcription was induced by galactosides, such as melibiose and raffinose, whereas gaIR was independently transcribed as a monocistronic gene, and that the level of transcription was fairly constant. The aga was overexpressed in E. coli BL21 (DE3) using pET26b(+) vector, and $\alpha$-Gal was accumulated in E. coli as an inclusion body.

Keywords

References

  1. Annunziato, M. E., R. R. Mahoney, and R. E. Mudgett. 1986. Production of a-galactosidase from Aspergillus oryzae grown in solid state culture. J. Food Sci. 51: 1370-1371 https://doi.org/10.1111/j.1365-2621.1986.tb13127.x
  2. Boucher, I., C. Vadeboncoeur, and S. Moineau. 2003. Characterization of genes involved in the metabolism of agalactosides by Lactococcus raf/inolactis. Appl. Environ. Microbiol. 69: 4049-4056 https://doi.org/10.1128/AEM.69.7.4049-4056.2003
  3. Church, F. C., S. P. Meyers, and V. R. Srinivasan. 1980. Isolation and characterization of alpha-galactosidase from Pichia guilliermondii, pp. 339-348. In L. A. Underkofler and M. L. Wulf (eds.), Developments in Industrial Microbiology, vol. 21. Lubrecht & Cramer, Arlington, VA, U.S.A
  4. Coombs, J. and J. E. Brenchley. 2001. Characterization of two new glycosyl hydrolases from the lactic acid bacterium Carnobacterium piscicola strain BA. Appl. Environ. Microbiol. 67: 5094-5099 https://doi.org/10.1128/AEM.67.11.5094-5099.2001
  5. Dey, P. M. and E. Del Campillo. 1984. Biochemistry of the multiple forms of glycosidases in plants. Adv. Enzymol. Relat. Areas Mol. Biol. 56: 141-249
  6. Dey, P. M., S. Patel, and M. D. Brownleader. 1993. Induction of ${\alpha}$-galactosidase in Penicillium ochrochloron by guar (Cyamopsis tetragonoloba) gum. Biotechnol. Appl. Biochem. 17: 361-371
  7. Dower, W. J., J. F. Miller, and C. W. Ragsdale. 1988. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 16: 6127-6145 https://doi.org/10.1093/nar/16.13.6127
  8. Garro, M. S., G. F. de Valdez, G. Oliver, and G. S. de Giori. 1996. Influence of carbohydrates on the alpha-galactosidase activity of Lactobacillus fermentum. Curr. Microbiol. 33: 302-305 https://doi.org/10.1007/s002849900118
  9. Grossiord, B., E. E. Vaughan, E. Luesink, and W. M. de Vos. 1998. Genetics of galactose utilization via the Leloir pathway in lactic acid bacteria. Lait 78: 77-84 https://doi.org/10.1051/lait:1998110
  10. Jhon, D. Y. and S. H. Lee. 2003. Complete DNA sequence and analysis of a cryptic plasmid isolated from Lactobacillus bifermentans in kimchi. J. Microbiol. Biotechnol. 13: 1018-1020
  11. Kelly, W. J., G. P. Davey, and L. J. H. Ward. 1998. Conjugative transfer ofraffinose metabolism in Lactococcus lactis. FEMS Microbiol. Lett. 167: 145-149 https://doi.org/10.1111/j.1574-6968.1998.tb13220.x
  12. Kim, S. J., J. H. Kim, J. Y. Park, H. T. Kim, S. J. Jeong, Y. L. Ha, H. D. Yun, and J. H. Kim. 2004. Cold adaptation of Lactobacillus paraplantarum C7 isolated from kimchi. J. Microbiol. Biotechnol. 14: 1071-1074
  13. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  14. Lim, J. M., Y. H. Jang, H. R. Kim, Y. T. Kim, T. J. Choi, J. K. Kim, and S. W. Nam. 2004. Overexpression of arylsulfatase in E. coli and its application to desulfatation of agar. J. Microbiol. Biotechnol. 14: 777-782
  15. Margolies-Clark, E., M. Tenkanen, E. Luonteri, and M. Penttila. 1996. Three a-galactosidase genes of Trichoderma reesei cloned by expression in yeast. Eur. J. Biochem. 240: 104-111 https://doi.org/10.1111/j.1432-1033.1996.0104h.x
  16. McIlvaine, T. C. 1921. A buffer solution for colorimetric comparison. J. Biol. Chem. 49: 183-186
  17. Nam, S. J., J. Y. Park, J. K. Kim, Y. L. Ha, H. D. Yun, and J. H. Kim. 2004. Cloning of pdh genes encoding subunits of pyruvate dehydrogenase complex from Lactobacillus reuteri ATCC 55739. J. Microbiol. Biotechnol. 14: 197-201
  18. Nigatu, A., S. Ahme, and G. Molin. 2000. Temperaturedependent variation in API 50 CH fermentation profiles of Lactobacillus species. Curr. Microbiol. 41: 21-26 https://doi.org/10.1007/s002840010085
  19. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., U.S.A
  20. Silvestroni, A., C. Connes, F. Sesma, G. Savoy de Giori, and J.-C. Piard. 2002. Characterization of the melA locus for agalactosidase in Lactobacillus plantarum. Appl. Environ. Microbiol. 68: 5464-5471 https://doi.org/10.1128/AEM.68.11.5464-5471.2002
  21. Tsuyumu, S. and B. G. Adams. 1974. Dilution kinetic studies on yeast populations: In vivo aggregation of galactose utilizing enzymes and positive regulator molecules. Gene 77: 919-923
  22. Vaillancourt, K., S. Moineau, M. Frenette, C. Lessard, and C. Vadeboncoeur. 2002. Galactose and lactose genes from the galactose-positive bacterium Streptococcus salivarius and the phylogenetically related galactose-negative bacterium Streptococcus thermophilus: Organization, sequence, transcription, and activity of the gal gene products. J. Bacteriol. 184: 785-793 https://doi.org/10.1128/JB.184.3.785-793.2002
  23. Wong, T. Y. 1990. Melibiose is hydrolyzed exocellularly by an inducible exo-${\alpha}$-galactosidase in Azotobacter vinelandii. Appl. Environ. Microbiol. 56: 2271-2273
  24. Yamane, T. 1971. Decomposition of raffinose by agalactosidase. An enzymatic reaction applied in the factoryprocess in Japanese beet sugar factories. Sucr. Beige/Sugar Ind. Abstr. 90: 345-348
  25. Zeilinger, S., D. Kristufek, I. Arisan-Atac, R. Hodits, and C. Kubicek. 1993. Conditions of formation, purification, and characterization of an ${\alpha}$-galactosidase of Trichoderma reesei RUT C-30. Appl. Environ. Microbial. 59: 1347-1353