Effects of Ionic Strength, Background Electrolytes, Heavy Metals, and Redox-Active Species on the Reduction of Hexavalent Chromium by Ecklonia Biomass

  • PARK DONGHEE (Advanced Environmental Biotechnology Research Center, Department of Chemical Engineering, School of Environmental Science and Engineering, Pohang University of Science and Technology) ;
  • YUN YEOUNG-SANG (Division of Environmental and Chemical Engineering, Research Institute of Industrial Technology, Chonbuk National University) ;
  • JO JI HYE (Advanced Environmental Biotechnology Research Center, Department of Chemical Engineering, School of Environmental Science and Engineering, Pohang University of Science and Technology) ;
  • PARK JONG MOON (Advanced Environmental Biotechnology Research Center, Department of Chemical Engineering, School of Environmental Science and Engineering, Pohang University of Science and Technology)
  • Published : 2005.08.01

Abstract

The biomass of the brown seaweed, Ecklonia, was used to remove Cr(VI) from wastewater. Previously, Cr(VI) was removed through its reduction to Cr(III) when brought into contact with the biomass. In this study, the effects of ionic strength, background electrolytes, and Cr(III), Ni(II), Zn(II), and Fe(III) on the Cr(VI) reduction were examined. An increased ionic strength inhibited the Cr(VI) reduction. The presence of other heavy metals, such as Cr(III), Ni(II), or Zn(II), only slightly affected the Cr(VI) reduction, while Fe(III) enhanced the reduction. Although the above various parameters could affect the reduction rate of Cr(VI) by Ecklonia biomass, these effects were relatively smaller than those of pH and temperature. In addition, the previously derived rate equation was found to be applicable over a range of ionic strengths and with different background electrolytes. In conclusion, Ecklonia, bioniass may be a good candidate as a biosorbent for the removal of Cr(VI) from wastewaters containing various other impurities, and scale-up to a practical process may be accomplished using the previously derived rate equation.

Keywords

References

  1. Aksu, Z., U. Ayikel, and T. Kutsal. 1997. Application of multi component adsorption isotherms to simultaneous biosorption of iron (III) and chromium (VI) on C. vulgaris. J. Chem. Technol. Biot. 70: 368-378 https://doi.org/10.1002/(SICI)1097-4660(199712)70:4<368::AID-JCTB772>3.0.CO;2-Z
  2. Anderson, R. A. 1997. Chromium as an essntial nutrient for humans. Regul. Toxicol. Pharm. 26: 835-841
  3. Baral, A. and R. D. Engelken. 2002. Chromium-based regulations and greening in metal finishing industries in the USA. Environ. Sci. Pol. 5: 121-133 https://doi.org/10.1016/S1462-9011(02)00028-X
  4. Chilwa, E. M. N. and Y.-T. Wang. 1997. Hexavalent chromium reduction by Bacillus sp. in a packed-bed bioreactor. Environ. Sci. Technol. 31: 1446-1451 https://doi.org/10.1021/es9606900
  5. Cho, D. H., M. H. Yoo, and E. Y. Kim. 2004. Biosorption of lead ($Pb^{2+}$) from aqueous solution by Rhodotorula aurantiaca. J. Microbial. Biotechnol. 14: 250-255.
  6. Clesceri, L. S., A. E. Greenberg, and A. D. Eaton. 1998. Standard Methods jar the Examination of Water and Wastewater, pp. 366-368. 20th Ed. American Public Health Association, American Water Work Association, and Water Environment Federation, Washington DC, U.S.A
  7. Eary, L. E. and D. Rai. 1988. Chromate removal from aqueous wastes by reduction with ferrous ion. Environ. Sci. Technol. 22: 972-977 https://doi.org/10.1021/es00173a018
  8. Fendorf, S. E. and G Li. 1996. Kinetics of chromate reduction by ferrous iron. Environ. Sci. Technol. 30: 1614-1617 https://doi.org/10.1021/es950618m
  9. Ishibashi, Y., C. Cervantes, and S. Silver. 1990. Chromium reduction in Pseudomonas putida. Appl. Environ. Microb. 56: 2268-2270
  10. Jeon, C., J. Y. Park, and Y. J. Yoo. 2001. Biosorption model for binary adsorption sites. J. Microbiol. Biotechnol. 11: 781-787
  11. Khattar, J. I. S., T. A. Sarma, D. P. Singh, and A. Sharma. 2002. Bioaccumulation of chromium ions by immobilized cells' of a filamentous cyanobacterium, Anabaena variabilis. J. Microbiol. Biotechnol. 12: 137-141
  12. Kratochvil, D., P. Pimentel, and B. Volesky. 1998. Removal of trivalent and hexavalent chromium by seaweed biosorbent. Environ. Sci. Technol. 32: 2693-2698 https://doi.org/10.1021/es971073u
  13. Park, D., Y.-S. Yun, and J. M. Park. 2004. Reduction of hexavalent chromium with the brown seaweed Ecklonia biomass. Environ. Sci. Technol. 38: 4860-4864 https://doi.org/10.1021/es035329+
  14. Park, D., Y.-S. Yun, and J. M. Park. 2004. Kinetics of the reduction of hexavalent chromium with the brown seaweed Ecklonia biomass. Water Res. (submitted)
  15. Sag, Y., D. Ayikel, Z. Aksu, and T. Kutsal. 1998. A comparative study for the simultaneous biosorption of Cr(Vl) and Fe(III) on C. vulgaris and R. arrhizus: Application of the competitive, adsorption models. Process Biochem. 33: 273-281 https://doi.org/10.1016/S0032-9592(97)00060-5
  16. Schiewer, S. and B. Volesky. 1997. Ionic strength and electrostatic effects in biosorption of divalent metal ions and protons. Environ. Sci. Technol. 31: 2478-2485 https://doi.org/10.1021/es960751u
  17. Sengupta, A. K.and D. Clifford. 1986. Chromate ion exchange mechanism for cooling water. Ind. Eng. Chem. Fund. 25: 249-258 https://doi.org/10.1021/i100022a012
  18. Yun, Y.-S. 2004. Characterization of functional groups of protonated Sargassum polycystum biomass capable of binding protons and metal ions. J. Microbiol. Biotechnol. 14: 29-34
  19. Yun, Y.-S. and B. Volesky. 2003. Modeling of lithium interference in cadmium biosorption. Environ. Sci. Technol. 37: 3601-3608 https://doi.org/10.1021/es011454e
  20. Yun, Y.-S., D. Park, J. M. Park, and B. Volesky. 2001. Biosorption of trivalent chromium on the brown seaweed biomass. Environ. Sci. Technol. 35: 4353-4358 https://doi.org/10.1021/es010866k