Effect of Bifidobacterium Cell Fractions on IL-6 Production in RAW 264.7 Macrophage Cells

  • Lee, Byung-Hee (Department of Food Science and Nutrition, Seoul National University) ;
  • Ji, Geun-Eog (Research Center, BIFIDO Co., LTD.)
  • Published : 2005.08.01

Abstract

Bifidobacterium has been previously shown to potentiate immune function, which was mediated through the stimulation of cytokine production by macrophage. This study was performed to further characterize the effective component of Bifidobacterium by measuring the level of interleukin (IL)-6 cytokine using the RAW 264.7 murine cell line as a macrophage model. RAW 264.7 cells were cultured for 24 h in the presence of whole cells (WCs), cell walls (CWs), and cell-free extracts (CFEs) from various strains of Bifidobacterium and other lactic acid bacteria at various concentrations. The most effective component was different depending on the strains and the concentrations used. When tested with each cell fraction from Bifidobacterium sp. BGN4, heat treatment of the cell fractions lowered the production of IL-6. Synergistic effect was obtained, especially when CWs and CFEs were combined. Sonicated WCs stimulated IL-6 production more than intact WCs. The in vitro approaches employed here should be useful in further characterization of the effects of Bifidobacterium on gastrointestinal and systemic immunity.

Keywords

References

  1. Abbas, A. K., A. H. Lichtman, and J. S. Pobe. 1994. Cytokines, p. 240. In Cellular and Molecular Immunology. 2nd Ed. W. B. Saunders Co., Philadelphia, PA
  2. Akira, S., T. Taga, and T. Kishimoto. 1993. Interleukin-6 in biology and medicine. Adv. Immunol. 54: 1-78 https://doi.org/10.1016/S0065-2776(08)60532-5
  3. Choi, Y J., C. J. Kim, S. Y Park, Y T. Ko, H. K. Jeong, and G E. Ji. 1996. Growth and beta-glucosidase activity of Bifidobacterium. J. Microbiol. Biotechnol. 6: 255-259
  4. Dong, W., J. I. Azcona-Olivera, K. H. Brooks, J. E. Linz, and J. J. Pestka. 1994. Elevated gene expression and production of interleukins 2, 4, 5, and 6 during exposure to vomitoxin (deoxynivalenol) and cycloheximide in the EL-4 thymoma. Toxicol. Appl. Pharmacol. 127: 282-290 https://doi.org/10.1006/taap.1994.1163
  5. Fernandes, C. F. and K. M. Shahani. 1990. Anticarcinogenic and immunological properties of dietary lactobacilli. J. Food Proto 53: 704- 710 https://doi.org/10.4315/0362-028X-53.8.704
  6. Gomez, E., M. M. Melgar, G P. Silva, A Portoles, and I. Gil. 1988. Exocellular products from Bifidobacterium adolescentis as immunomodifiers in the Iymphoprohferative responses of mouse splenocytes. FEMS Microbiol. Lett. 56: 47-52 https://doi.org/10.1111/j.1574-6968.1988.tb03148.x
  7. Hatcher, G E. and R. S. Lambrecht. 1993. Augmentation of macrophage phagocytic activity by cell-free extracts of selected lactic acid-producing bacteria. J. Dairy Sci. 76: 2485-2492 https://doi.org/10.3168/jds.S0022-0302(93)77583-9
  8. Hattori, K., A. Yamamoto, M. Sasai, S. Taniuchi, T. Kojima, Y Kobayashi, H. Iwamoto, K. Namba, and T. Yaeshima. 2003. Effects of administration of bifidobacteria on fecal microtlora and clinical symptoms in infants with atopic dermatitis. Arerugi 252: 20-30
  9. Hosono, A, J. Lee, A Ametani, M. Natsume, M. Hirayama, T. Adachi, and S. Kaminogawa. 1997. Characterization of a water-soluble polysaccharide fraction with immunopotentiating activity from Bifidobacterim adolescentis M 101-4. Biosci. Biotech. Biochem. 61: 312-316 https://doi.org/10.1271/bbb.61.312
  10. Hughes, D. B. and D. G Hoover. 1991. Bifidobacterium: Their potential for use in American dairy products. Food Technol. 45: 74-83
  11. Ishikawa, H., I. Akedo, Y. Umesaki, R. Tanaka, A. lmaoka, and T. Otani. 2003. Randomized controlled trial ofthe effect of Bifidobacterium-fermented milk on ulcerative colitis. J. Am. Call. Nutr. 22: 256-263
  12. Kado-Oka, Y, S. Fujiwara, and T. Hirota. 1991. Effects of Bifidobacterium cells on mitogenic response of splenocytes and several functions of phagocytes. Milchwissenshaft 46: 626-630
  13. Kanauchi, O., K. Mitsuyama, Y Araki, and A. Andoh. 2003. Modification of intestinal flora in the treatment of int1ammatory bowel disease. Curr. Pharm. Res. 9: 336-346
  14. Kim, H. J., J. H. Kim, J. H. Son, H. J. Sea, S. J. Park, M. S. Paek, and S. K. Kim. 2004. Characterization of bacteriocin produced by Lactobacillus bulgaricus. J. Microbiol. Bioteclmol. 14: 503-508
  15. Kim, I. H., M. S. Park, and G E. Ji. 2003. Characterization of adhesion of Bifidobacterium sp. BGN4 to human enterocytelike Caco-2 cells. J. Microbiol. Biotechnol. 13: 276-281
  16. Lammers, K. M., P. Brigidi, B. Vitali, P. Gionchetti, F. Rizzello, E. Caramelli, D. Matteuzzi, and M. Campieri. 2003. Immunomodulatory effects of probiotic bacteria DNA: IL-1 and IL-10 response in human peripheral blood mononuclear cells. FEMS Immunol. Med. Microbiol. 38: 165-172 https://doi.org/10.1016/S0928-8244(03)00144-5
  17. Lee, J., A. Ametani, A. Enomoto, Y. Sato, H. Motoshima, F. Ike, and S. Kaminogawa. 1993. Screening for the immunopotentiating activity of food microorganisms and enhancement of the immune response by Bifidobacterium adolescentis M101-4. Biosci. Biotech. Biochem. 57: 2127-2132 https://doi.org/10.1271/bbb.57.2127
  18. Miettinen, M., J. Vuopio-Varkila, and K. Varkila. 1996. Production of human necrosis factor alpha, interleukin-6 and interleukin-10 is induced by lactic acid bacteria. Infect. Immun. 64: 5403-5405
  19. Mitsuoka, T. 1982. Recent trends in research on intestinal flora. Bifidobact. Microfl. 1: 3-24 https://doi.org/10.12938/bifidus1982.1.1_3
  20. Namioka, S. 1985. Immunoresponsiveness of newborn piglets and peptidoglycan derived from Bifidobacterium. Bifidobact. Microfl. 4: 3-14 https://doi.org/10.12938/bifidus1982.4.1_3
  21. Park, M. S., H. W. Moon, and G. E. Ji. 2003. Molecular characterization of plasmid from Bifidobacterium longum. J. Microbial. Biotechnol. 13: 457-461
  22. Park, S. Y., G. E. Ji, Y. T. Ko, H. K. Jung, Z. Ustunol, and J. J. Pestka. 1999. Potentiation of hydrogen peroxide, nitric oxide, and cytokine production in RAW 264.7 macrophage cells exposed to human and commercial isolates of Bifidobacterium. Int. J. Food Microbiol. 46: 231-241 https://doi.org/10.1016/S0168-1605(98)00197-4
  23. Rafter, J. J. 1995. The role of lactic acid bacteria in colon cancer prevention. Scand. J. Gastroenterol. 30: 497-502 https://doi.org/10.3109/00365529509089779
  24. Sasaki, T., S. Fukami, and S. Namioka. 1994. Enhanced resistance of mice to Escherichia coli infection induced by administration of peptidoglycan derived from Bifidobacterium thermophilum. J. Vet. Med. Sci. 53: 433-437
  25. Sekine, K., E. Watanabe-Sekine, J. Ohta, T. Toida, T. Tatsuki, T. Kawashima, and Y. Hashimoto. 1994. Induction and activation of tumoricidal cells in vivo and in vitro by the bacterial cell wall of Bifidobacterium infantis. Bifidobact. Microfl. 13: 65-77 https://doi.org/10.12938/bifidus1982.13.2_65
  26. Sekine, K., J. Ohta, M. Onishi, T. Tatsuki, Y. Shimokawa, T. Toida, T. Kawashima, and Y. Hashimoto. 1995. Analysis of antitumor properties of effector cells stimulated with a cell wall preparation (WPG) of Bifidobacterium in/antis. Biol. Pharm. Bull. 18: 148-153 https://doi.org/10.1248/bpb.18.148
  27. Strober, W. 1991. Trypan blue exclusion test for cell viability, pp. A.3.3-4.ln J. E. Coligan, A. M. Kruisbeek, D. H. Marguiles, E. M. Shevach, and W. Strober (eds.), Current Protocols in Immunology. Greene Pub. and Wiley-Interscience, New York, U.S.A,
  28. Yasui, H. and M. Ohwaki. 1991. Enhancement of immune response in Peyer's patch cells cultured with Bifidobacterium breve. J. Dairy Sci. 74: 1187-1195 https://doi.org/10.3168/jds.S0022-0302(91)78272-6
  29. Yu, K. W., K. S. Shin, Y. M. Choi, and H. J. Suh. 2004. Macrophage stimulating activity of exo-biopolymer from submerged culture of Lentinus edodes with rice bran. J. Microbiol. Biotechnal. 14: 658-664